Advertisement

Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala

  • Hualiang Liang
  • Ahmed Mokrani
  • Hopeson Chisomo-Kasiya
  • Ke Ji
  • Xianping Ge
  • Mingchun Ren
  • Bo Liu
  • Bingwen Xi
  • Ajun Sun
Article

Abstract

The present study evaluated the mechanisms governing insulin signaling, glucose metabolism, and lipogenesis in juvenile fish fed with different dietary leucine levels. Fish were fed six practical diets with graded leucine levels ranging from 0.90 to 2.94% of dry basis for 8 weeks. The trial results showed that, compared to the control group (0.90%), optimal dietary leucine level (1.72%) resulted in the up-regulation of mRNA expression related to insulin signaling pathway, including target of rapamycin (TOR), insulin receptor substrate 1 (IRS-1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt). However, an excessive leucine level (2.94%) led to protein S6 kinase 1 (S6K1) overexpression and inhibited TOR, IRS-1, PI3K, and Akt mRNA expressions. The protein level of TOR, S6K1, IRS-1, PI3K, and Akt showed a similar result with mRNA level of these genes. Optimal dietary leucine level (1.72%) significantly improved plasma insulin content, while high level of leucine showed an inhibiting phenomenon. Optimal dietary leucine level (1.72%) could reduce plasma glucose by enhancing the ability of glycometabolism including improving glucose transporter 2 (GLUT2), glucokinase (GK) expressions and down-regulating phosphoenolpyruvate carboxykinase (PEPCK) expression. While an excessive leucine level (2.94%) resulted in high plasma glucose by inhibiting the ability of glycometabolism including lowering GLUT2 and GK expressions, and improving glucose-6-phosphatase (G6Pase) and PEPCK expressions. The relative expressions of pyruvate kinase (PK) and glycogen synthase (GS) were not significantly affected by dietary leucine levels. Dietary leucine level of 1.33% could improve plasma triglyceride content (TG) by enhancing lipogenesis including improving sterol-response element-binding protein 1 (SREBP1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and glucose-6-phosphate dehydrogenase (G6PDH) expressions compared to the control group (0.90%). Total cholesterol (TC) was not significantly affected by dietary leucine levels. The present results indicate that optimal leucine level could improve glycolysis and fatty acid synthesis through improving insulin sensitivity in juvenile blunt snout bream. However, excessive dietary leucine level resulted in high plasma glucose, which led to insulin resistance by inhibiting the gene expressions of insulin signaling pathway and activating gluconeogenesis-related gene expression.

Keywords

Blunt snout bream L-leucine Glycometabolism Lipogenesis 

Notes

Funding information

This study was financially supported by the National Key R&D Program of China (2018YFD0900400), the Natural Science Foundation of Jiangsu Province (BK20161143), the National Natural Science Foundation of China, NSFC (31772820), the Modern Agriculture Industrial Technology System special project-the National Technology System for Conventional Freshwater Fish Industries (CARS-45).

Compliance with ethical standards

Competing interests

The authors declare no competing financial interests.

References

  1. Association of Official Analytical Chemists (AOAC) (2003) Official methods of analysis of the Association of Official Analytical Chemists 15th ed. Association of Official Analytical Chemists Inc. In: Arlington VAGoogle Scholar
  2. Bernard JR, Liao YH, Hara D, Ding Z, Chen CY, Nelson JL, Ivy JL (2011) An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats. Am J Physiol Endocrinol Metab 300(4):E752–E760.  https://doi.org/10.1152/ajpendo.00643.2010 CrossRefPubMedGoogle Scholar
  3. Bruce KD, Hanson MA (2010) The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr 140:648–652.  https://doi.org/10.3945/jn.109.111179 CrossRefPubMedGoogle Scholar
  4. Castillo J, Crespo D, Capilla E, Diaz M, Chauvigne F, Cerda J, Planas JV (2009) Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am J Physiol Regul Integr Comp Physiol 297(5):R1570–R1581.  https://doi.org/10.1152/ajpregu.00430.2009 CrossRefPubMedGoogle Scholar
  5. Chaneton B, Gottlieb E (2012) Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci 37(8):309–316.  https://doi.org/10.1016/j.tibs.2012.04.003 CrossRefPubMedGoogle Scholar
  6. Chen Q, Reimer RA (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25(3):340–349.  https://doi.org/10.1016/j.nut.2008.08.012 CrossRefPubMedGoogle Scholar
  7. da Silva PM, Zoppi CC, Filiputti E, Silveira LR, Quesada I, Boschero AC, Carneiro EM (2010) Preliminary report: leucine supplementation enhances glutamate dehydrogenase expression and restores glucose-induced insulin secretion in protein-malnourished rats. Metabolism 59(6):911–913.  https://doi.org/10.1016/j.metabol.2009.10.014 CrossRefPubMedGoogle Scholar
  8. Dai W, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2015) Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes. Cell Physiol Biochem 36(3):1084–1100.  https://doi.org/10.1159/000430281 CrossRefPubMedGoogle Scholar
  9. Doi M, Yamaoka I, Fukunaga T, Nakayama M (2003) Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C(2)C(12) myotubes. Biochem Biophys Res Commun 312(4):1111–1117CrossRefGoogle Scholar
  10. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183.  https://doi.org/10.1016/j.molcel.2010.06.022 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eckel RH (2003) A new look at dietary protein in diabetes. Am J Clin Nutr 78(4):671–672CrossRefGoogle Scholar
  12. Farhat KMA (2014) Response of fingerling stinging catfish, Heteropneustes fossilis (Bloch) to varying levels of dietary L-leucine in relation to growth, feed conversion, protein utilization, leucine retention and blood parameters. Aquaculture Nutr 20(3):291–302.  https://doi.org/10.1111/anu.12077 CrossRefGoogle Scholar
  13. Fei X, Huang Z, Li H, Yu J, Wang C, Chen S, Meng Q, Cheng Y, Gao X, Li J, Liu Y, Guo F (2011) Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60(3):746–756.  https://doi.org/10.2337/db10-1246 CrossRefGoogle Scholar
  14. Feksa LR, Cornelio AR, Vargas CR (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metab Brain Dis 18(2):129–137CrossRefGoogle Scholar
  15. Filiputti E, Rafacho A, Araújo EP, Silveira LR, Trevisan A, Batista TM, Curi R, Velloso LA, Quesada I, Boschero AC, Carneiro EM (2010) Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism 59(5):635–644.  https://doi.org/10.1016/j.metabol.2009.09.007 CrossRefPubMedGoogle Scholar
  16. Food and Agriculture Organization (FAO) (2004) In: Spreij, M. (Ed.), National Aquaculture Legislation Overview-China. National Aquaculture Legislation Overview (NALO) Fact Sheets. FAO Fisheries and Aquaculture Department, Rome, Italy. http://www.fao.org/fishery/legalframework/nalo_china/ en#tcNB0041
  17. Freudenberg A, Petzke KJ, Klaus S (2013) Dietary l-leucine and l-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity. Amino Acids 44(2):519–528.  https://doi.org/10.1007/s00726-012-1363-2 CrossRefPubMedGoogle Scholar
  18. Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, Byers MG, Shows TB, Bell GI (1998) Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A 85:5434–5438CrossRefGoogle Scholar
  19. Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W (2012) Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoS One 7(8):e42637.  https://doi.org/10.1371/journal.pone.0042637 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Granner D, Pilkis S (1990) The genes of hepatic glucose metabolism. J Biol Chem 265:10173–10176PubMedGoogle Scholar
  21. Habte-Tsion HM, Ge X, Liu B, Xie J, Ren M, Zhou Q, Miao L, Pan L, Chen R (2015) A deficiency or an excess of dietary threonine level affects weight gain, enzyme activity, immune response and immune-related gene expression in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 42(2):439–446.  https://doi.org/10.1016/j.fsi.2014.11.021 CrossRefPubMedGoogle Scholar
  22. Habte-Tsion HM, Ren M, Liu B, Ge X, Xie J, Chen R (2016) Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol 51:189–199.  https://doi.org/10.1016/j.fsi.2015.11.033 CrossRefPubMedGoogle Scholar
  23. Hall JR, Short CE, Driedzic WR (2006) Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2 and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J Exp Biol 209:4490–4502CrossRefGoogle Scholar
  24. Hamann I, Petroll K, Hou X, Anwarmohamed A, Elkadi AO, Klotz LO (2014) Acute and long-term effects of arsenite in hepg2 cells: modulation of insulin signaling. Biometals 27(2):317–332.  https://doi.org/10.1007/s10534-014-9714-y CrossRefPubMedGoogle Scholar
  25. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100(21):12027–12032CrossRefGoogle Scholar
  26. Kim E (2009) Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr Res Pract 3(1):64–71.  https://doi.org/10.4162/nrp.2009.3.1.64 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krasnov A, Teerijoki H, Mölsä H (2001) Rainbow trout (Oncorhynchus mykiss) hepatic glucose transporter. Biochim Biophys Acta 1520:174–178CrossRefGoogle Scholar
  28. Lansard M, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39:801–810.  https://doi.org/10.1007/s00726-010-0533-3 CrossRefPubMedGoogle Scholar
  29. Lansard M, Panserat S, Plagnes-Juan E, Dias K, Seiliez I, Skiba-Cassy S (2011) L-leucine, l-methionine, and l-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141(1):75–80.  https://doi.org/10.3945/jn.110.124511 CrossRefPubMedGoogle Scholar
  30. Layman DK, Walker DA (2006) Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr 136:319S–323SCrossRefGoogle Scholar
  31. Leibiger B, Leibiger IB (1995) Functional analysis of DNA-elements involved in transcriptional control of the human glucose transporter 2 (GLUT 2) gene in the insulin-producing cell line βTC-3. Diabetologia 38(1):112–115CrossRefGoogle Scholar
  32. Li X, Liu W, Jiang Y, Zhu H, Ge X (2010) Effects of dietary protein and lipid levels in practical diets on growth performance and body composition of blunt snout bream (Megalobrama amblycephala) ingerlings. Aquaculture 303(1):65–70.  https://doi.org/10.1016/j.aquaculture.2010.03.014 CrossRefGoogle Scholar
  33. Li F, Yin Y, Tan B, Kong X, Wu G (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193.  https://doi.org/10.1007/s00726-011-0983-2 CrossRefPubMedGoogle Scholar
  34. Liang H, Ren M, Habte-Tsion HM, Ge X, Xie J, Mi H, Xi B, Miao L, Liu B, Zhou Q, Fang W (2016) Dietary arginine affects growth performance, plasma amino acid contents and gene expressions of the TOR signaling pathway in juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 461:1–8.  https://doi.org/10.1016/j.aquaculture.2016.04.009 CrossRefGoogle Scholar
  35. Liang H, Habte-Tsion HM, Ge X, Ren M, Xie J, Miao L, Zhou Q, Lin Y, Pan W (2017) Dietary arginine affects the insulin signaling pathway, glucose metabolism and lipogenesis in juvenile blunt snout bream Megalobrama amblycephala. Sci Rep 7(1):7864.  https://doi.org/10.1038/s41598-017-06104-3 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Massa ML, Gagliardino JJ, Francini F (2011) Liver glucokinase: an overview on the regulatory mechanisms of its activity. IUBMB Life 63(1):1–6.  https://doi.org/10.1002/iub.411 CrossRefPubMedGoogle Scholar
  37. McPherson R, Gauthier A (2004) Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol 82(1):201–211CrossRefGoogle Scholar
  38. Meijer AJ (2003) Amino acids as regulators and components of nonproteinogenic pathways. J Nutr 133:2057S–2062SCrossRefGoogle Scholar
  39. Menge BA, Schrader H, Ritter PR, Ellrichmann M, Uhl W, Schmidt WE, Meier JJ (2010) Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul Pept 160(1–3):75–80.  https://doi.org/10.1016/j.regpep.2009.08.001 CrossRefPubMedGoogle Scholar
  40. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6(1):87–97CrossRefGoogle Scholar
  41. Nairizi A, She P, Vary TC, Lynch CJ (2009) Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J Nutr 139(4):715–719.  https://doi.org/10.3945/jn.108.100081 CrossRefPubMedPubMedCentralGoogle Scholar
  42. National Research Council (NRC) (2011) Nutrient requirement of fish and shrimp. National Academy Press, Washington, DCGoogle Scholar
  43. Newgard CB1, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326.  https://doi.org/10.1016/j.cmet.2009.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K (2002) Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun 299(5):693–696CrossRefGoogle Scholar
  45. Noatsch A, Petzke KJ, Millrose MK, Klaus S (2011) Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets. Eur J Nutr 50(6):479–488.  https://doi.org/10.1007/s00394-010-0155-2 CrossRefPubMedGoogle Scholar
  46. Pedroso JA, Nishimura LS, de Matos-Neto EM, Donato J Jr, Tirapegui J (2014) Leucine improves protein nutritional status and regulates hepatic lipid metabolism in calorie-restricted rats. Cell Biochem Funct 32:326–332.  https://doi.org/10.1002/cbf.3017
  47. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420.  https://doi.org/10.1016/j.cell.2011.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(2):e45–e445Google Scholar
  49. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224–236.  https://doi.org/10.1016/j.cmet.2008.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ren M, Liao Y, Xie J, Liu B, Zhou Q, Ge X, Cui H, Pan L, Chen R (2013) Dietary arginine requirement of juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 414(2):229–234.  https://doi.org/10.1016/j.aquaculture.2013.08.021 CrossRefGoogle Scholar
  51. Ren M, Habte-Tsion HM, Xie J, Liu B, Zhou Q, Ge X, Pan L, Chen R (2015a) Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture 438:75–78.  https://doi.org/10.1016/j.aquaculture.2015.01.008 CrossRefGoogle Scholar
  52. Ren M, Habte-Tsion HM, Liu B, Miao L, Ge X, Xie J, Liang H, Zhou Q, Pan L (2015b) Dietary leucine level affects growth performance, whole body composition, plasma parameters and relative expression of tor and TNF-ɑ in juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 448:162–168.  https://doi.org/10.1016/j.aquaculture.2015.06.008 CrossRefGoogle Scholar
  53. She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6(3):181–194CrossRefGoogle Scholar
  54. Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40(6):439–452CrossRefGoogle Scholar
  55. Solerte SB, Fioravanti M, Locatelli E, Bonacasa R, Zamboni M, Basso C, Mazzoleni A, Mansi V, Geroutis N, Gazzaruso C (2008) Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus. Am J Cardiol 101(11A):82E–88E.  https://doi.org/10.1016/j.amjcard.2008.03.006 CrossRefPubMedGoogle Scholar
  56. Sun X, Zemel MB (2007) Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 42(4):297–305CrossRefGoogle Scholar
  57. Sun X, Zemel MB (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 6(1):26.  https://doi.org/10.1186/1743-7075-6-26 CrossRefGoogle Scholar
  58. Tan X, Lin H, Huang Z, Zhou C, Wang A, Qi C, Zhao S (2016) Effects of dietary leucine on growth performance, feed utilization, non-specific immune responses and gut morphology of juvenile golden pompano Trachinotus ovatus. Aquaculture 465:100–107.  https://doi.org/10.1016/j.aquaculture.2016.08.034 CrossRefGoogle Scholar
  59. Terova G, Rimoldi S, Brambilla F, Gornati R, Bernardini G, Saroglia M (2009) In vivo regulation of GLUT2 mRNA in sea bass (Dicentrarchus labrax) in response to acute and chronic hypoxia. Comp Biochem Physiol B Biochem Mol Biol 152:306–316.  https://doi.org/10.1016/j.cbpb.2008.12.011 CrossRefPubMedGoogle Scholar
  60. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684CrossRefGoogle Scholar
  61. Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, Marette A (2007) Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104:14056–14061CrossRefGoogle Scholar
  62. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3(6):393–402CrossRefGoogle Scholar
  63. Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, Viikari JS, Raitakari OT, Ala-Korpela M (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36(3):648–655CrossRefGoogle Scholar
  64. Yang H, Guangzhong WU (2009) Effects of new sulfonylurea compound g004 on glycometabolism in insulin-resistance hepg2 cells. China J Mod Med 19(6):820–412Google Scholar
  65. Yang J, Wong RK, Park M, Wu J, Cook JR, York DA, Deng S, Markmann J, Naji A, Wolf BA, Gao Z (2006) Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 55(1):193–201CrossRefGoogle Scholar
  66. Yilmaz S, Beytut E, Erişir M, Ozan S, Aksakal M (2006) Effects of additional vitamin E and selenium supply on G6PDH activity in rats treated with high doses of glucocorticoid. Neurosci Lett 393(2–3):85–89CrossRefGoogle Scholar
  67. Zanchi NE, Guimarães-Ferreira L, de Siqueira-Filho MA, Felitti V, Nicastro H, Bueno C, Lira FS, Naimo MA, Campos-Ferraz P, Nunes MT, Seelaender M, de Oliveira Carvalho CR, Blachier F, Lancha AH (2012a) Dose and latency effects of leucine supplementation in modulating glucose homeostasis: opposite effects in healthy and glucocorticoid-induced insulin-resistance states. Nutrients 4(12):1851–1867.  https://doi.org/10.3390/nu4121851 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zanchi NE, Guimarães-Ferreira L, Siqueira-Filho MA, Gabriel Camporez JP, Nicastro H, Seixas Chaves DF, Campos-Ferraz P, Lancha AH Jr, de Oliveira Carvalho CR (2012b) The possible role of leucine in modulating glucose homeostasis under distinct catabolic conditions. Med Hypotheses 79(6):883–888.  https://doi.org/10.1016/j.mehy.2012.09.018 CrossRefPubMedGoogle Scholar
  69. Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6):1647–1654CrossRefGoogle Scholar
  70. Zhang J, Gao Z, Yin J, Quon MJ, Ye J (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 283(51):35375–35382.  https://doi.org/10.1074/jbc.M806480200 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhou Z, Ren Z, Zeng H, Yao B (2008) Apparent digestibility of various feedstuffs for blunt snout bream, Megalobrama amblycephala. Aquaculture Nutr 14(2):153–165.  https://doi.org/10.1111/j.1365-2095.2007.00515.x CrossRefGoogle Scholar
  72. Zhou C, Ge X, Liu B, Xie J, Chen R, Ren M (2015) Effect of high dietary carbohydrate on the growth performance, blood chemistry, hepatic enzyme activities and growth hormone gene expression of wuchang bream (megalobrama amblycephala) at two temperatures. Asian-Australas J Anim Sci 28(2):207–214.  https://doi.org/10.5713/ajas.13.0705 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hualiang Liang
    • 1
  • Ahmed Mokrani
    • 1
  • Hopeson Chisomo-Kasiya
    • 1
  • Ke Ji
    • 1
  • Xianping Ge
    • 1
    • 2
  • Mingchun Ren
    • 1
    • 2
  • Bo Liu
    • 1
    • 2
  • Bingwen Xi
    • 1
    • 2
  • Ajun Sun
    • 2
  1. 1.Wuxi Fisheries CollegeNanjing Agricultural UniversityWuxiChina
  2. 2.Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC)Chinese Academy of Fishery Sciences (CAFS)WuxiChina

Personalised recommendations