Fish Physiology and Biochemistry

, Volume 45, Issue 1, pp 417–426 | Cite as

Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species

  • Edison BarbieriEmail author
  • Alessandra Maria Tegon Ferrarini
  • Karina Fernandes Oliveira Rezende
  • Diego Stéfani Teodoro Martinez
  • Oswaldo Luiz Alves


The study of the toxic effect of carbofuran and multiwalled carbon nanotubes (MWCNTs) on Astyanax ribeirae metabolism is of paramount importance due to the increasing use of this pesticide in agriculture and in the production of nanotubes within the material industry. This study aimed to evaluate the effects of carbofuran, MWCNT, and the combination of these compounds on specific oxygen consumption and excretion of ammonia in A. ribeirae. Therefore, 65 fish were divided into three groups of treatments at varying concentrations: carbofuran (0.01, 0.05, 0.1, and 0.5 mg/L), MWCNT (0.1, 0.25, 0.5, and 1.0 mg/L), and 0.5 mg/L of MWCNT added to carbofuran concentrations (0.01, 0.05, 0.1, and 0.5 mg/L). The average specific oxygen consumption in the groups exposed to carbofuran, compared to the control, increased 73.49% at the 0.01 mg/L concentration and decreased 63.86% and 91.57% with treatments of 0.1 and 0.5 mg/L, respectively. For groups exposed to the MWCNT, there was an 83.91% drop with the 1.0 mg/L treatment, and the carbofuran + MWCNT groups recorded a decrease of 71.09%, 92.77%, and 93.98% at concentrations of 0.05, 0.1, and 0.5 mg/L, respectively. In relation to specific ammonia excretion, in groups exposed to carbofuran compared to the control, there was an increase of 134.37% and 200% with the 0.1 and 0.5 mg/L treatments, respectively. The group exposed to carbofuran + MWCNT experienced a decrease of 60% and 80% with treatments of 0.1 mg/L carbofuran + 0.5 mg/L MWCNT and 0.5 mg/L carbofuran + 0.5 mg/L MWCNT, respectively. Therefore, it was concluded that carbofuran + MWCNT interact, increasing the effects in Astyanax sp.


Nanoparticles Pesticide Ammonia excretion Oxygen consumption 


Funding information

This study was financially supported by the FAPESP–São Paulo Research Foundation (process 503 2012/50184-8) and CNPq (process 303920/2013-0). The author (Alves, O.L.) gratefully acknowledge financial support from CNPq, INCT-Inomat, and NanoBioss-SisNANO/MCTI.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Arias ARL, Buss DF, Alburquerque C, Inácio AF, Freire MM, Egler M, Mugnal R, Baptista DF (2007) Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência e Saúde Coletiva 12:61–72CrossRefGoogle Scholar
  2. Barbieri E (2007) Use of metabolism and swimming activity to evaluate the sublethal toxicity of surfactant (LAS-C12) on Mugil platanus. Braz Arch Biol Technol 50:101–112CrossRefGoogle Scholar
  3. Barbieri E, Moreira P, Luchini LA, Hidalgo KR, Muñoz A (2013) Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels. Toxicol Ind Health 29:1–8Google Scholar
  4. Barbieri E, Campos-Garcia J, Martinez DST, Silva JRMC, Alves OL, Rezende KFO (2016) Histopathological effects on gills of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–1169CrossRefGoogle Scholar
  5. Barbieri E, Ruíz-Hidalgo K, Rezende LAFG, Sabino FP (2017a) Efectos del carbofuran en juveniles de Oreochromis niloticus en la toxicidad, metabólica de rutina y los parámetros hematológicos. Bol. Inst Pesca 43:513–526CrossRefGoogle Scholar
  6. Barbieri E, Ferreira AC, Rezende KFO (2017b) Cadmium effects on shrimp ammonia excretion (Farfantepenaeus paulensis) at different temperatures and levels. PanamJAS 12:176–183Google Scholar
  7. Brito R, Chimal ME, Gaxiola G, Rosas C (2000) Growth, metabolic rate, and digestive enzyme activity in the white shrimp Litopenaeus setiferus early postlarvae fed different diets. J Exp Mar Biol Ecol 255:21–36CrossRefGoogle Scholar
  8. Britto RS, Garcia ML, Rocha AM, Flores JA, Pinheiro MVB, Monserrat JM, Ferreira JLR (2012) Effects of carbon nanomaterials fullerene C60 and fullerol C60 (OH)18–22 on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation. Aquat Toxicol 114–115:80–87CrossRefGoogle Scholar
  9. Bueno-Krawczyk ACD, Guiloski IC, Piancini LDS, Azevedo JC, Ramsdorf WA, Ide AH, Guimarães ATB, Cestari MM, Silva de Assis HC (2015) Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere 135:257–264CrossRefGoogle Scholar
  10. Campos-Garcia J, Martinez DST, Alves OL, Leonardo AFG, Barbieri E (2015) Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity. Ecotoxicol Environ Saf 11:131–137CrossRefGoogle Scholar
  11. Campos-Garcia J, Martinez DST, Rezende KFO, Silva JRMC, Alves OL, Barbieri E (2016) Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicol Environ Saf 133:481–488CrossRefGoogle Scholar
  12. Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 15:168–177CrossRefGoogle Scholar
  13. Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multiwalled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–225CrossRefGoogle Scholar
  14. Christiansen PD, Brozek K, Hansen BW (1998) Energetic and behavioral responses by the common goby, Pomatoschistus microps (Kroyer), exposed to linear alkybenzene sulfonate. Environ Toxicol Chem 17:2051–2057CrossRefGoogle Scholar
  15. Cimbaluk GV, Ramsdorf WA, Perussolo MC, Santos HKF, Da Silva de Assis HC, Schnitzler MC, Carneiro PG, Cestari MM (2018) Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicol Environ Saf 150:215–223CrossRefGoogle Scholar
  16. Cort CCWD, Ghisi NC (2014) Uso de alterações morfológicas nucleares em Astyanax spp. para avaliação da contaminação aquática. Mundo Saúde 38:31–39Google Scholar
  17. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRefGoogle Scholar
  18. Dresselhaus MS, Endo M (2001) Relation of carbon nanotubes to other carbon materials- carbon nanotubes. Top Appl Phys 80:11–28CrossRefGoogle Scholar
  19. Emerich DF (2005) Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5CrossRefGoogle Scholar
  20. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663CrossRefGoogle Scholar
  21. Erbe MCL, Ramsdorf WA, Vicari T, Cestari MM (2010) Toxicity evaluation of water samples collected near a hospital waste landfill through bioassays of genotoxicity piscine micronucleus test and comet assay in fish Astyanax and ecotoxicity Vibrio fischeri and Daphnia magna. Ecotoxicology 20(2):320–328CrossRefGoogle Scholar
  22. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430CrossRefGoogle Scholar
  23. Galvan GL, Lirola JR, Felisbino K, Vicari T, Yamamoto CI, Cestari MM (2016) Genetic and hematologic endpoints in Astyanax altiparanae (Characidae) after exposure and recovery to water-soluble fraction of gasoline (WSFG). Bull Environ Contam Toxicol 97:63–70CrossRefGoogle Scholar
  24. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  25. Griffitt RJ, Weil R, Hyndman HA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 4:8178–8186CrossRefGoogle Scholar
  26. Handy RD, Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicol 17:287–314CrossRefGoogle Scholar
  27. Hernández-Moreno D, Pérez-López M, Soler F, Gravato C, Guilhermino L (2011) Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): study of biomarkers and behaviour alterations. Ecotoxicol Environ Saf 74:1905–1912CrossRefGoogle Scholar
  28. Jash NB, Bhattacharaya S (1983) Delayed toxicity of carbofuran in fresh water teleost Channa punctatus. Indian J Exp Biol 17:693–697Google Scholar
  29. Lemaire P, Sturve J, Forlin L, Livingstone DR (1996) Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Mar Environ Res 2:317–321CrossRefGoogle Scholar
  30. Luz RAS, Martins MVA, Magalhães JL, Siqueira-Junior V, Zucolotto ON, Oliveira-Junior FN, Crespilho WC, Silva R (2011) Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine. Mater Chem Phys 130:1072–1077CrossRefGoogle Scholar
  31. Marques MN, Cotrim MB, Pires MAF, Filho OB (2007) Avaliação do impacto da agricultura em áreas de proteção ambiental, pertencentes à bacia hidrográfica do Rio Ribeira de Iguape, São Paulo. Quim Nova 30:1171–1178CrossRefGoogle Scholar
  32. Martinez DST, Alves OL (2013) Interação de nanomateriais com biossistemas e a nanotoxicologia: na direção de uma regulamentação. Ciência Cultura 65:32–36CrossRefGoogle Scholar
  33. Martinez DST, Alves OL, Barbieri E (2013) Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser 429:1–8CrossRefGoogle Scholar
  34. Moghimi SM, Hunter AC, Murray (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330CrossRefGoogle Scholar
  35. Mommsen T (1998). Growth and metabolism. In: Evans D (ed) The Physiology of Fishes, Second edititon, CRC Press, Boca Raton, pp. 65–100Google Scholar
  36. Moreira JC, Gonçalves ES, Bereta M (2013) Contaminantes Emergentes – Desafios e Perspectivas, CBQ. 51pGoogle Scholar
  37. Nogueira MM, Cotrim MEB, Pires MAF (2007) Avaliação do impacto da agricultura em áreas de proteção ambiental, pertencentes à bacia hidrográfica do Rio Ribeira de Iguape, São Paulo. Quim Nova 30:1171–1178CrossRefGoogle Scholar
  38. Renwick LC, Brown DA, Clouter K, Donaldson (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447CrossRefGoogle Scholar
  39. Rezende KFO, Bergami E, Alves KVB, Corsi I, Barbieri E (2018) Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Bol Inst Pesca 44:343–343CrossRefGoogle Scholar
  40. Santos DB, Barbieri E, Bondioli AC, Melo CB (2014) Effects of lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. Mundo Saúde 38:16–23CrossRefGoogle Scholar
  41. Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109CrossRefGoogle Scholar
  42. Tomquelski GV, Martins GLM, Dias TS (2015) Características e manejo de pragas da cultura da soja. Pesquisa, Tecnologia e Produtividade 2:61–82Google Scholar
  43. Winkler L (1888) Methods for measurement of dissolved oxygen. Ber Deutsch Chem Ges 21:2843–2854CrossRefGoogle Scholar
  44. Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591–1598CrossRefGoogle Scholar
  45. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807CrossRefGoogle Scholar
  46. Zhang C, Yu K, Li F, Xiang J (2017) Acute toxic effects of zinc and mercury on survival, standard metabolism, and metal accumulation in juvenile ridgetail white prawn, Exopalaemon carinicauda. Ecotoxicol Environ Saf 145:549–556CrossRefGoogle Scholar
  47. Zhen Y, Aili J, Changhai W (2010) Oxygen consumption, ammonia excretion, and filtration rate of the marine bivalve Mytilus edulis exposed to methamidophos and omethoate. Mar Freshw Behav Physiol 43:243–255CrossRefGoogle Scholar
  48. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–979CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Pesca–APTA–SAA/SP–Governo do Estado de São PauloCananéiaBrazil
  2. 2.Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
  3. 3.Centro Nacional de Pesquisa em Energia e MateriaisLaboratório Nacional de NanotecnologiaCampinasBrazil
  4. 4.Laboratory of Solid State Chemistry, Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations