Fish Physiology and Biochemistry

, Volume 45, Issue 1, pp 231–243 | Cite as

The accumulation, histopathology, and intestinal microorganism effects of waterborne cadmium on Carassius auratus gibelio

  • Jun Liu
  • Juan-juan Pang
  • Zong-cai TuEmail author
  • Hui Wang
  • Xiao-mei ShaEmail author
  • Yan-hong Shao
  • Guang-xian Liu


Cadmium (Cd) is known to be a potentially toxic heavy metals to the fish health and growth. Carassius auratus gibelio (C. a. gibelio) specimens were exposed to waterborne Cd (0, 0.05, 0.10, 0.15, and 0.20 mg/L CdCl2) for 14 days. Cd accumulation, liver and intestine histopathology, and intestinal microorganism were investigated in the present study. The results indicated that Cd accumulation in the gill, liver, intestine, and muscle gradually decreased as Cd concentration increased. The gill accumulated higher amounts of Cd than other tissues. The histopathology of liver and intestine underwent changes with different Cd concentrations, including hepatocyte hypertrophy, aggregation of blood cells, sinusoids, lipidosis, necrosis of hepatic tissues, the erosion of villi, necrosis in the mucosal layer, the appearance of vacuoles in the lamina propria, hyperplasia, and swelling of goblet cells. Moreover, the core gut microbiota existed in the intestinal microorganism and did not change as Cd concentration increased. However, the diversity of intestinal microorganism was significantly reduced compared with that of the control sample. The present results indicated that C. a. gibelio exposed to Cd suffered toxicity, and Cd could affect the biodiversity of the intestinal microbiota of C. a. gibelio.


Cadmium Freshwater fish Toxicity Bioaccumulation Gut microbiota 


Funding information

This work was supported by the earmarked fund for China Agriculture Research System (CARS-45), Excellent Youth Foundation of Jiangxi Province (20162BCB23017), National Science Foundation of Jiangxi Province (20142BAB213016), Science and Technology Support Program of Jiangxi Province (2014BBF60043), and Innovation Foundation of Nanchang University (cx2015110).

Compliance with ethical standards

All experimental procedures used in the present study were approved by the Animal Care Review Committee, Nanchang University.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agah H, Leermakers M, Elskens M, Fatemi SMR, Baeyens W (2009) Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess 157:499–514CrossRefGoogle Scholar
  2. Al-Asgah NA, Abdel-Warith AA, Younis EM, Allam HY (2015) Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22:543–550CrossRefPubMedCentralGoogle Scholar
  3. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353CrossRefPubMedCentralGoogle Scholar
  4. Annabi A, Messaoudi I, Kerkeni A, Said K (2011) ICadmium accumulation and histological lesion in Mosquitofish (Gambusia affinis) tissues following acute and chronic exposure. Int J Environ Res 5:745–756Google Scholar
  5. Au D (2004) The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull 48:817–834CrossRefGoogle Scholar
  6. Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379CrossRefGoogle Scholar
  7. Barhoumi S, Messaoudi I, Tmim D, Khaled S, Kerkeni A (2009) Cadmium bioaccumulation in three benthic fish species, Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabes in Tunisia. J Environ Sci 21:980–984CrossRefGoogle Scholar
  8. Blasco J, Rubio JA, Forja J, Gomez-Parra A, Establier R (1998) Heavy metals in some fishes of the Mugilidae family from salt-ponds of Cadiz bay SW Spain. Ecotoxicol Environ Res 1:71–77Google Scholar
  9. Borquez A, Serrano E, Dantagnan P, Carrasco J, Hernandez A (2011) Feeding high inclusion of whole grain white lupin (Lupinus albus) to rainbow trout (Oncorhynchus mykiss): effects on growth, nutrient digestibility, liver and intestine histology and muscle fatty acid composition. Aquac Res 42:1067–1078CrossRefGoogle Scholar
  10. Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41CrossRefGoogle Scholar
  11. Driessnack MK, Matthews AL, Raine JC, Niyogi S (2016) Interactive effects of chronic waterborne copper and cadmium exposure on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Comp Biochem Phys C 179:165–173Google Scholar
  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998CrossRefGoogle Scholar
  13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedCentralGoogle Scholar
  14. Guardiola FA, Cuesta A, Meseguer J, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Esteban MA (2013) Accumulation, histopathology and immunotoxicological effects of waterborne cadmium on gilthead seabream (Sparus aurata). Fish Shellfish Immunol 35:792–800CrossRefGoogle Scholar
  15. Han S, Liu Y, Zhou Z, He S, Cao Y, Shi P, Yao B, RingÖ E (2010) Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquac Res 42:47–56CrossRefGoogle Scholar
  16. Hou L, Zhang X, Wang D, Baccarelli A (2011) Environmental chemical exposures and human epigenetics. Int J Epidemiol:r154Google Scholar
  17. Isani G, Andreani G, Cocchioni F, Fedeli D, Carpene E, Falcioni G (2009) Cadmium accumulation and biochemical responses in Sparus aurata following sub-lethal Cd exposure. Ecotoxicol Environ Saf 72:224–230CrossRefGoogle Scholar
  18. Karaytug S, Erdem C, Cicik B (2007) Accumulation of cadmium in the gill, liver, kidney, spleen, muscle and brain tissues of Cyprinus carpio. Ekoloji 63:16–22Google Scholar
  19. Kargın F, Çoğun HY (1999) Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotica. Bull Environ Contam Toxicol 63:511–519CrossRefGoogle Scholar
  20. Li Y, Shi J, Shi S, Liu Z, Li Z, Li J (2015) Effect of live, frozen and artificial feeds on digestive enzymes, aminotransferase, histology of liver and intestine in mandarin fish hybrid (Siniperca chuatsi♀× Siniperca scherzeri♂). Isr J Aquacult Bamidgeh 67Google Scholar
  21. Luis-Villasenor IE, Castellanos-Cervantes T, Gomez-Gil B, Carrillo-García ÁE, Campa-Córdova AI, Ascencio F (2013) Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community. World J Microbiol Biotechnol 29:257–265CrossRefGoogle Scholar
  22. Martins CI, Eding EH, Verreth JA (2011) The effect of recirculating aquaculture systems on the concentrations of heavy metals in culture water and tissues of Nile tilapia Oreochromis niloticus. Food Chem 126:1001–1005CrossRefGoogle Scholar
  23. Maunder RJ, Buckley J, Val AL, Sloman KA (2011) Accumulation of dietary and aqueous cadmium into the epidermal mucus of the discus fish Symphysodon sp. Aquat Toxicol 103:205–212CrossRefGoogle Scholar
  24. Nakayama SM, Ikenaka Y, Muzandu K, Choongo K, Oroszlany B, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia. Arch Environ Contam Toxicol 59:291–300CrossRefGoogle Scholar
  25. Pacheco M, Santos MA (2002) Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotox Environ Safe 53:331–347CrossRefGoogle Scholar
  26. Pandey S, Parvez S, Ansari RA, Ali M, Kaur M, Hayat F, Ahmad F, Raisuddin S (2008) Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem Biol Interact 174:183–192CrossRefGoogle Scholar
  27. Patnaik BB, Howrelia H, Mathews T, Selvanayagam M (2011) Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. Afr J Biotechnol 10:12218–12223Google Scholar
  28. Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506CrossRefGoogle Scholar
  29. Raissy, M, Ansari, M, Rahimi, E (2011) Mercury, arsenic, cadmium and lead in lobster (Panulirus homarus) from the Persian Gulf. Toxicol Ind Health:1132175406Google Scholar
  30. Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl Å (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841CrossRefGoogle Scholar
  31. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608CrossRefPubMedCentralGoogle Scholar
  32. Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9:e91853CrossRefPubMedCentralGoogle Scholar
  33. Shukla V, Dhankhar M, Prakash J, Sastry KV (2007) Bioaccumulation of Zn, cu and cd in Channa punctatus. J Environ Biol 28:395Google Scholar
  34. Souid G, Souayed N, Yaktiti F, Maaroufi K (2013) Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Saf 89:1–7CrossRefGoogle Scholar
  35. Suzuki Y, Morita I, Yamane Y, Murota S (1989) Cadmium stimulates prostaglandin E2 production and bone resorption in cultured fetal mouse calvaria. Biochem Biophys Res Commun 158:508–513CrossRefGoogle Scholar
  36. Teh SJ, Deng X, Deng D, Teh F, Hung SS, Fan TW, Liu J, Higashi RM (2004) Chronic effects of dietary selenium on juvenile Sacramento splittail (Pogonichthys macrolepidotus). Environ Sci Technol 38:6085–6093CrossRefGoogle Scholar
  37. Ureña R, Peri S, Del Ramo J, Torreblanca A (2007) Metal and metallothionein content in tissues from wild and farmed Anguilla anguilla at commercial size. Environ Int 33:532–539CrossRefGoogle Scholar
  38. Van Dyk JC, Pieterse GM, Van Vuren J (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440CrossRefGoogle Scholar
  39. Wang Y, Sheng H, He Y, Wu J, Jiang Y, Tam NF, Zhou H (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78:8264–8271CrossRefPubMedCentralGoogle Scholar
  40. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440CrossRefPubMedCentralGoogle Scholar
  41. Yildiz M (2008) Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. J Appl Ichthyol 24:589–594CrossRefGoogle Scholar
  42. Yılmaz M, Ersan Y, Koç E, Özen H, Karaman M (2011) Toxic effects of cadmium sulphate on tissue histopathology and serum protein expression in european chub, Leuciscus cephalus (Linnaeus, 1758). Kafkas Univ Vet Fak Derg 17:131–135Google Scholar
  43. Zhang M, Liu N, Qian C, Wang Q, Wang Q, Long Y, Huang Y, Zhou Z, Yan X (2014) Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microb Ecol 68:416–425CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Life ScienceJiangxi Normal UniversityNanchangChina
  2. 2.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina

Personalised recommendations