Advertisement

Fish Physiology and Biochemistry

, Volume 45, Issue 1, pp 199–208 | Cite as

Identification of Carassius auratus gibelio liver cell proteins interacting with the GABAA receptor γ2 subunit using a yeast two-hybrid system

  • Rong-Rong Ma
  • Jing Sun
  • Wen-Hong Fang
  • Ya-Ping Dong
  • Ji-Ming Ruan
  • Xian-Le Yang
  • Kun HuEmail author
Article

Abstract

The γ-aminobutyric acid type A (GABAA) receptor is an important pentameric inhibitory neurotransmitter receptor, and the γ2 subunit of this receptor plays a key role in potentiation of the GABAA response. We previously detected that the expression of GABAA receptor in the livers of Carassius auratus gibelio significantly increased after medication (avermectin and difloxacin treatment). In order to better understand the mechanism of action of the GABAA receptor γ2 subunit in the livers of C. auratus gibelio, we constructed a C. auratus gibelio liver cDNA library (the titer value of 1.2 × 106 cfu/mL) and identified the proteins that interact with the GABAA receptor γ2 subunit by using a yeast two-hybrid assay. The yeast two-hybrid screening yielded seven positive clones, namely, prelid3b, cdc42, sgk1, spg21, proteasome, chia.5, and AP-3 complex subunit beta-1, all of which have been annotated by the NCBI database. The functions of these proteins are complex; therefore, additional studies are required to determine the specific interactions of these proteins with the GABAA receptor γ2 subunit in the liver of C. auratus gibelio. Although the interactions identified by the yeast two-hybrid system should be considered as preliminary results, the findings of this study may provide further direction and a foundation for future research focusing on the mechanisms of the GABAA receptor γ2 subunit in C. auratus gibelio livers.

Keywords

Carassius auratus gibelio GABAA receptor γ2 subunit Liver cDNA library Yeast two-hybrid Protein–protein interaction 

Notes

Funding information

This study was supported by the Special Fund for Agro-scientific Research in the Public Interest (Grant 201203085), the 863 Program (Grant 2011AA10A216), the National Natural Resources Platform, and the Shanghai University Knowledge Service Platform.

Compliance with ethical standards

Experimental procedures were carried out in accordance with the Shanghai Ocean University Animal Health Guidelines for Animal Care and Experimentation and supervised by the Institutional Animal Care and Use Committee at Shanghai Ocean University.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abelson JL, Khan S, Phan KL & Liberzon I (2003) Role of the GABAA receptor in anxiety: evidence from animal models, molecular and clinical psychopharmacology, and brain imaging studies. Curr Neuropharmacol 1:267–283Google Scholar
  2. Alam S, Laughton DL, Walding A, Wolstenholme AJ (2006) Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 43:1432–1442CrossRefGoogle Scholar
  3. Araki T, Sato M, Kiyama H, Manabe Y, Tohyama M (1992) Localization of GABA A -receptor γ 2-subunit mRNA-containing neurons in the rat central nervous system. Neuroscience 47:45–61CrossRefGoogle Scholar
  4. Asay MJ, Boyd SK (2006) Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana). Brain Res 1094:76–85CrossRefGoogle Scholar
  5. Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291Google Scholar
  6. Bertram L, Mcqueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23CrossRefGoogle Scholar
  7. Bohlhalter S, Weinmann O, Mohler H, Fritschy JM (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16:283–297CrossRefGoogle Scholar
  8. Bonnert TP, Mckernan RM, Farrar S, Heavens RP, Smith DW, Hewson L & Rigby MR (1999) θ, a novel γ-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci U S A 9891-9896Google Scholar
  9. Brambilla F, Biggio G, Pisu MG, Bellodi L, Perna G, Bogdanovichdjukic V, Purdy RH, Serra M (2003) Neurosteroid secretion in panic disorder. Psychiatry Res 118:107–116CrossRefGoogle Scholar
  10. Brandon NJ, Delmas P, Hill J, Smart TG, Moss SJ (2001) Constitutive tyrosine phosphorylation of the GABAA receptor γ2 subunit in rat brain. Neuropharmacology 41:745–752CrossRefGoogle Scholar
  11. Burgon J, Robertson AL, Sadiku P, Wang X, Hooper-Greenhill E, Prince LR, Walker P, Hoggett EE, Ward JR, Farrow SN (2014) Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution. J Immunol 192:1796–1805CrossRefGoogle Scholar
  12. Castro A, Aguilar J, Andrés C, Felix R, Delgadolezama R (2011) GABAA receptors mediate motoneuron tonic inhibition in the turtle spinal cord. Neuroscience 192:74–80CrossRefGoogle Scholar
  13. Danelishvili L, Bermudez LE (2015) Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation. Microbes Infect 17:628–637CrossRefGoogle Scholar
  14. Gangisetty O, Reddy DS (2009) The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity. J Neurosci Methods 181:58–66CrossRefGoogle Scholar
  15. Gietz RD (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 313:107Google Scholar
  16. Gietz RD, Robbins A, Graham KC, Triggs-Raine B & Woods RA (1997) Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system. Molecular and Cellular Biochemistry 172:67–79Google Scholar
  17. Hancili S, ZE Ö, Ata P, Karatoprak EY, Gürbüz T, Bostancı M, Paçal Y, Nuhoğlu Ç, Ceran Ö (2014) The GABAA receptor γ2 subunit (R43Q) mutation in febrile seizures. Pediatr Neurol 50:353–356CrossRefGoogle Scholar
  18. Harvey RJ, Kim HC, Darlison MG (1993) Molecular cloning reveals the existence of a fourth γ subunit of the vertebrate brain GABAA receptor. FEBS Lett 331:211–216CrossRefGoogle Scholar
  19. Hollingsworth R, White JH (2004) Target discovery using the yeast two-hybrid system. Drug Discov Today 3:97–103CrossRefGoogle Scholar
  20. Hsu CL, Muerdter CP, Knickerbocker AD, Walsh RM, Zepeda-Rivera MA, Depner KH, Sangesland M, Cisneros TB, Kim JY, Sanchez-Vazquez P (2012) Cdc42 GTPase and Rac1 GTPase act downstream of p120 catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev Dyn 241:1545–1561CrossRefGoogle Scholar
  21. Johnston GA, Chebib M, Hanrahan JR & Mewett KN (2003) GABA(C) receptors as drug targets. Curr Drug Targets-CNS Neurol Disord 2:260–268Google Scholar
  22. Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL (2016) Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway. PLoS Genet 12:e1005823CrossRefGoogle Scholar
  23. Kim YC, Li X, Thompson D, Demartino GN (2013) ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome. J Biol Chem 288:3334–3345CrossRefGoogle Scholar
  24. Koch BE, Stougaard J, Spaink HP (2014) Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene Expr Patterns 14:69–77CrossRefGoogle Scholar
  25. Liu H, Pope RM (2004) Phagocytes: mechanisms of inflammation and tissue destruction. Rheum Dis Clin N Am 30:19–39CrossRefGoogle Scholar
  26. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406CrossRefGoogle Scholar
  27. Ma KY, Li JL, Qiu GF (2016) Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system. Gen Comp Endocrinol 229:112–118CrossRefGoogle Scholar
  28. Mascia MP, Biggio F, Mancuso L, Cabras S, Cocco PL, Gorini G, Manca A, Marra C, Purdy RH, Follesa P (2002) Changes in GABA(A) receptor gene expression induced by withdrawal of, but not by long-term exposure to, ganaxolone in cultured rat cerebellar granule cells. J Pharmacol Exp Ther 303:1014–1020CrossRefGoogle Scholar
  29. Mckeller MR, Herrera-Rodriguez S, Ma W, Ortiz-Quintero B, Rangel R, Candé C, Sims-Mourtada JC, Melnikova V, Kashi C, Phan LM (2010) Vital function of PRELI and essential requirement of its LEA motif. Cell Death Dis 1:e21CrossRefGoogle Scholar
  30. Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein-protein interactions. Cold Spring Harb Protoc 2015:425–430Google Scholar
  31. Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275CrossRefGoogle Scholar
  32. Möhler H, Crestani F, Rudolph U (2001) GABA(A)-receptor subtypes: a new pharmacology. Curr Opin Pharmacol 1:22–25CrossRefGoogle Scholar
  33. Ong J, Kerr DI (1990) GABA-receptors in peripheral tissues. Life Sci 46:1489–1501CrossRefGoogle Scholar
  34. Pereiraneves A, Gonzaga L, Mennabarreto RF, Benchimol M (2015) Characterisation of 20S proteasome in Tritrichomonas foetus and its role during the cell cycle and transformation into endoflagellar form. PLoS One 10:e0129165CrossRefGoogle Scholar
  35. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, Connor PO, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefGoogle Scholar
  36. Rashkovan G, Fisher K, Parnas I (1997) GABA A receptors affect directly the release boutons in the neuromuscular junction of the crayfish opener muscle. Neurosci Lett 237:S40CrossRefGoogle Scholar
  37. Ruan J, Hu K, Zhang H, Wang Y, Zhou A, Zhao Y, Yang X (2014) Distribution and quantitative detection of GABAA receptor in Carassius auratus gibelio. Fish Physiol Biochem 40:1301Google Scholar
  38. Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800CrossRefGoogle Scholar
  39. Rudolph U, Crestani F, Möhler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194CrossRefGoogle Scholar
  40. Schweizer C, Balsiger S, Bluethmann H, Mansuy IM, Fritschy JM, Mohler H, Lüscher B (2003) The γ2 subunit of GABA A receptors is required for maintenance of receptors at mature synapses. Mol Cell Neurosci 24:442–450CrossRefGoogle Scholar
  41. Sigel E, Baur R, Boulineau N, Minier F (2006) Impact of subunit positioning on GABAA receptor function. Biochem Soc Trans 34:868–871CrossRefGoogle Scholar
  42. Soong BW, Paulson HL (2007) Spinocerebellar ataxias: an update. Curr Opin Neurol 20:438–446CrossRefGoogle Scholar
  43. Stewart P, Williams EA, Stewart MJ, Soonklang N, Degnan SM, Cummins SF, Hanna PJ, Sobhon P (2011) Characterization of a GABAA receptor β subunit in the abalone Haliotis asinina that is upregulated during larval development. J Exp Mar Biol Ecol 410:53–60CrossRefGoogle Scholar
  44. Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32:109–122CrossRefGoogle Scholar
  45. Wang Y, Ji-Ming R, Zhou AL, Zhao YN, Cao HP, Kun HU, Yang XL (2013) Cloning and expression of partial cDNA encoding GABA_B receptor subunit 1 in Carassius auratus gibelio. Chinese J Zoology 48:905–911Google Scholar
  46. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213:1–47CrossRefGoogle Scholar
  47. Zhao Y, Sun Q, Hu K, Ruan J, Yang X (2016) Isolation, characterization, and tissue-specific expression of GABA A receptor α1 subunit gene of Carassius auratus gibelio after avermectin treatment. Fish Physiol Biochem 42:83–92CrossRefGoogle Scholar
  48. Zhou AL, Hu K, Ruan JM, Cao HP, Wang Y, Zhao YN, Yang XL (2015) Effect of avermectin (AVM) on the expression of γ-aminobutyric acid A receptor (GABAAR) in Carassius gibelio (Bloch, 1782). J Appl Ichthyol 31:862–869CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Rong-Rong Ma
    • 1
    • 2
    • 3
    • 4
  • Jing Sun
    • 1
    • 2
    • 3
  • Wen-Hong Fang
    • 4
  • Ya-Ping Dong
    • 1
    • 2
    • 3
  • Ji-Ming Ruan
    • 5
  • Xian-Le Yang
    • 1
    • 2
    • 3
  • Kun Hu
    • 1
    • 2
    • 3
    • 6
    Email author
  1. 1.National Pathogen Collection Center for Aquatic AnimalsShanghai Ocean UniversityShanghaiChina
  2. 2.Shanghai Collaborative Innovation for Aquatic Animal Genetics and BreedingShanghai Ocean UniversityShanghaiChina
  3. 3.National Demonstration Center for Experimental Fisheries Science EducationShanghai Ocean UniversityShanghaiChina
  4. 4.Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
  5. 5.College of Animal Sciences and TechnologyJiangxi Agricultural UniversityNanchangChina
  6. 6.College of Fisheries and Life ScienceShanghai Ocean UniversityLingang New City ShanghaiChina

Personalised recommendations