Development of a Fluid–Structure Coupling Validated with a Confined Fire: Application to Painted Caves

  • Fabien SalmonEmail author
  • Delphine Lacanette
  • Jean-Christophe Mindeguia
  • Colette Sirieix
  • Axel Bellivier
  • Jean-Claude Leblanc
  • Catherine Ferrier


In 1994, three speleologists discovered the Chauvet–Pont d’Arc Cave, which contains singular thermal marks on walls deep in the cavity. These alterations arose from intense fires, and understanding their characteristics would help archaeologists suggest hypotheses about the function of such activities. In this context, three confined fires were conducted in a former underground quarry to reproduce thermo-alterations similar to those in the Chauvet–Pont d’Arc Cave and extract experimental data. Each fire involved approximately 135 kg of wood, which was continuously supplied by firemen for safety reasons (> 500°C) and burnt in the shape of a tepee 80 cm in diameter for 50 min. This paper presents the validation of a numerical model on this experimentation. The modelling requires coupling between the combustion and wall impact simulations. Thus, a link between the combustion code FireFOAM and the thermo-mechanical code Cast3m was created with Python scripts. The results from the simulation agree with the measurements and the observations. More specifically, the analysis is based on the temperatures, gas and particle concentrations, gas velocities, soot deposition, colour changes at the walls and areas likely to spall. These data were collected from thirty-seven measuring points covering the whole quarry. This validated tool will provide information about the features of the fires that occurred within the Chauvet–Pont d’Arc Cave.


Fire dynamics Large eddy simulation OpenFOAM Thermo-mechanical coupling Cast3m Chauvet–Pont d’Arc Cave 

List of Symbols


Absorption coefficient (m−1)


Specific heat at constant pressure (J kg−1 K−1)


Specific heat at constant volume (J kg−1 K−1)


External force (N)


Friction factor


Total enthalpy (J kg−1)


Height of the ceiling (m)


Convective heat transfer coefficient (W m−2 K−1)


Radiative intensity (W m−2)


Subgrid-scale kinetic energy (m2 s−2)


Characteristic length (m)


Pressure (Pa)


Convective heat release rate (kW)


Radiative heat flux (W m−2)


Incident radiative heat flux (W m−2)


Ideal gas constant (J mol−1 K−1)


Specific gas constant (J kg−1 K−1)


Radial distance from the fire center line (m)


Ray direction


Source term (W m−3)


Strain rate (s−1)


Stoichiometric coefficient of the oxidizer


Temperature (K)


Velocity (m s−1)


Mass fraction

Greek Terms


Filter size (m)




Subgrid-scale kinetic energy dissipation (m2 s−3)


Error between simulation and experiment


Effective thermal diffusivity (m2 s−1)


Thermal conductivity (W K−1 m−1)


Dynamic viscosity (kg m−1 s−1)


Effective dynamic viscosity (kg m−1 s−1)


Stoichiometric coefficient


Turbulent viscosity (m2 s−1)


Density (kg m−3)


Stefan–Boltzmann constant (W m−2 K−4)

\(\dot{\omega }_{k}\)

Chemical reaction rate (kg m−3 s−1)



We thank the Regional Council of Aquitaine and Nouvelle-Aquitaine for providing funding for the CarMoThap project and for their investment in a 432-processor cluster located in the I2M laboratory. The researches on the Chauvet–Pont d’Arc Cave have received specific financial help from the Ministry of Culture and Communication. We thank the LCPP staff (Laboratoire Centrale de la Préfecture de Police) for their help in providing the experimental instrumentation (velocity sensors, thermocouples, gas and particle concentration sensors). Furthermore, the following institutions have given support: CNRS, Bordeaux University, Bordeaux-INP and Bordeaux-Montaigne University. We thank C. Bouchet, the owner of the quarry in Fauroux (Lugasson) and M. Vidal for having made available scots pine, as well as the SDIS 33 staff for participation in the experiments of the CarMoThaP program. We also express our gratitude to M. Corbé, L. Bassel, M. Bosq, E. Florensan, J. Sabidussi and C. Verdet for their precious help packaging wood and for their involvement in the November 2016 experiments. This work was also performed using HPC resources from GENCI-CINES (Grant 2017-A0032B10268).


  1. 1.
    Zadeh S, Maragkos G, Beji T, Merci B (2016) Large eddy simulation of the ceiling jet induced by the impingement of a turbulent air plume. Fire Technol 52(6):2093–2115CrossRefGoogle Scholar
  2. 2.
    Le D, Labahn J, Beji T, Devaud C, Weckman E, Bounagui A (2018) Assessment of the capabilities of FireFOAM to model large-scale fires in a well-confined and mechanically ventilated multi-compartment structure. J Fire Sci 36(1):3–29CrossRefGoogle Scholar
  3. 3.
    Yuan S, Zhang J (2009) Large eddy simulation of compartment fire with solid combustibles. Fire Saf J 44(3):349–362MathSciNetCrossRefGoogle Scholar
  4. 4.
    Weisenpacher P, Glasa J, Halada L (2016) Parallel Computation of smoke movement during a car park fire. Comput Inform 35:1416–1437MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zhang X, Guo Y, Chan C, Lin W (2007) Numerical simulations on fire spread and smoke movement in an underground car park. Build Environ 42(10):3466–3475CrossRefGoogle Scholar
  6. 6.
    Roh J, Ryou H, Kim D, Jung W, Jang Y (2007) Critical velocity and burning rate in pool fire during longitudinal ventilation. Tunn Undergr Space Technol 22(3):262–271CrossRefGoogle Scholar
  7. 7.
    Zhao S, Liu F, Wang F, Weng M, Zeng Z (2018) A numerical study on smoke movement in a metro tunnel with a non-axisymmetric cross-section. Tunn Undergr Space Technol 73:187–202CrossRefGoogle Scholar
  8. 8.
    McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator user’s guide, sixth edition 1019. NIST Special Publication (Online).
  9. 9.
    Li J, Chow W (2003) Numerical studies on performance evaluation of tunnel ventilation safety systems. Tunn Undergr Space Technol 18(5):435–452CrossRefGoogle Scholar
  10. 10.
    Meng N, Hu L, Wu L, Yang L, Zhu S, Chen L, Tang W (2014) Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station. Tunn Undergr Space Technol 40:151–159CrossRefGoogle Scholar
  11. 11.
    Zhao B, Kruppa J (2002) Structural behaviour of an open car park under real fire scenarios. Fire Mater 28:269–280CrossRefGoogle Scholar
  12. 12.
    Luo C, Xie W, DesJardin P (2011) Fluid–structure simulations of composite material response for fire environments. Fire Technol 47(4):887–912CrossRefGoogle Scholar
  13. 13.
    Khoury G (2000) Effect of fire on concrete and concrete structures. Prog Struct Eng Mater Banner 2(4):429–447CrossRefGoogle Scholar
  14. 14.
    Zhang H, Davie C (2013) A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures. Fire Saf J 59:102–110CrossRefGoogle Scholar
  15. 15.
    Bordard A, Guibert P, Ferrier C, Debard E, Kervazo B, Geneste J (2014) Les rubéfactions des parois de la grotte Chauvet: une histoire de chauffe? In: Les arts de la Préhistoire: micro-analyses, mises en contextes et conservation, Paillet P. (dir)Google Scholar
  16. 16.
    Debard E, Ferrier C, Kervazo B (2012) Etude géologique de la grotte Chauvet–Pont d’Arc. Bilan des travaux de la triennale 2010–2012. Etudes pluridisciplinaires à la grotte Chauvet–Pont d’Arc (Ardèche). Rapport d’activité 2010–2012, vol 1, pp 59–98Google Scholar
  17. 17.
    Quiles A, Valladas H, Bocherens H, Delque-Kolic E, Kaltnecker E, Plicht J, Delannoy J-J, Feruglio V, Fritz C, Monney J, Philippe M, Tosello G, Clottes J, Geneste J-M (2016) A high-precision chronological model for the decorate Upper Paleolithic cave of Chauvet–Pont d’Arc, Ardèche, France. Proc Natl Acad Sci 113(17):4670–4675CrossRefGoogle Scholar
  18. 18.
    Guibert P, Brodard A, Quilès A, Geneste J-M, Baffier D, Debard E, Ferrier C (2015) When were the walls of the Chauvet–Pont-d’Arc Cave heated? A chronological approach by thermoluminescence. Quat Geochronol 29:36–47CrossRefGoogle Scholar
  19. 19.
    Ferrier C, Debard E, Kervazo B, Brodard A, Guibert P, Baffier D, Feruglio V, Gely B, Geneste J, Maksud F (2014) Les parois chauffées de la grotte Chauvet–Pont d’Arc (Ardèche): caractérisation et chronologie. Paléo 25:59–78Google Scholar
  20. 20.
    Lacanette D, Mindeguia J-C, Brodard A, Ferrier C, Guibert P, Leblanc J-C, Malaurent P, Sirieix C (2017) Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires. Int J Therm Sci 120:1–18CrossRefGoogle Scholar
  21. 21.
    Salmon F, Lacanette D, Mindeguia J-C, Sirieix C, Ferrier C, Leblanc J-C (2018) FireFOAM simulation of a localised fire in a gallery. J Phys Conf Ser 1107, 042017CrossRefGoogle Scholar
  22. 22.
    Salmon F, Lacanette D, Mindeguia J-C, Sirieix C, Bellivier A, Ferrier C, Leblanc J-C (2019) Localized fire in a gallery: model development and validation. Int J Therm Sci 139:144–159CrossRefGoogle Scholar
  23. 23.
    OpenFOAM (Online).
  24. 24.
  25. 25.
    CAST3M (2016) (Online).
  26. 26.
    Théry-Parisot I, Thiébault S (2005) Analyses polliniques des sols aurignaciens de la grotte Chauvet (Ardèche). In: Geneste (dir) J-M (ed) La grotte Chauvet à Vallon-Pont-d’Arc: un bilan des recherches pluridisciplinaires. Actes de la séance de la Société préhistorique française, Lyon, 2003, ParisGoogle Scholar
  27. 27.
    Bellivier A, Coppalle A, Loo A, Yon J, Decoster L, Dupont S, Bazin H (2015) Comparison and assessment of particle mass concentrations measurements in fire smokes with a microbalance, opacimeter and PPS devices. In: 10th AOSFST, October 5–7, TsukubaGoogle Scholar
  28. 28.
    Luo M (1997) Effects of radiation on temperature measurement in a fire environment. J Fire Sci 15(6):443–460CrossRefGoogle Scholar
  29. 29.
    Dréan V, Auguin G, Leblanc J-C, Lacanette D, Mindeguia J-C, Bellivier A, Ferrier C (2017) Numerical modelling of thermal conditions during fires in cave-like geometry. In: Proceedings of the 15th international conference fire and materials, pp 64–65Google Scholar
  30. 30.
    Chase J (1998) NIST-JANAF thermochemical tables, fourth edition. J Phys Chem Ref Data, Mongraph No. 9Google Scholar
  31. 31.
    Poling B, Prausnitz J, O’Connell J (1987) The properties of gases and liquids. McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Sutherland W (1893) The viscosity of gases and molecular force. Philos Mag S5:507–531zbMATHCrossRefGoogle Scholar
  33. 33.
    Magnussen B, Hjertager B (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc Combust Int 16:719–729CrossRefGoogle Scholar
  34. 34.
    Yoshizawa A (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids 29(7):2152–2164zbMATHCrossRefGoogle Scholar
  35. 35.
    Tihay V, Perez-Ramirez Y, Morandini F, Santoni P, Barboni T (2013) Heat transfers and energy released in the combustion of fine vegetation fuel beds. 21ème Congrès Français de mécaniqueGoogle Scholar
  36. 36.
    Grosshandler W (1993) A narrow-band model for radiation calculations in a combustion environment. NIST technical note 1402Google Scholar
  37. 37.
    Beresnev S, Chernyak V (1995) Thermophoresis of s spherical particle in a rarefied gas: numerical analysis based on the model kinetic equations. Phys Fluids 7:1743–1756zbMATHCrossRefGoogle Scholar
  38. 38.
    Sagot B, Antonini G, Buron F (2009) Annular flow configuration with high deposition efficiency for the experimental determination of thermophoretic diffusion coefficients. J Aerosol Sci 40(12):1030–1049CrossRefGoogle Scholar
  39. 39.
    Brugière E (2012) PhD thesis, INSA (Rouen)Google Scholar
  40. 40.
    SnappyHexMesh (Online).
  41. 41.
    Alpert R (2008) SPFE handbook of fire protection engineering, Chapter Ceiling Jet Flows, 4th edn. National Fire Protection Association, QuincyGoogle Scholar
  42. 42.
    You H, Faeth G (1979) Ceiling heat transfer during fire plume and fire impingement. Fire Mater 3(3):140–147CrossRefGoogle Scholar
  43. 43.
    Holman J (1990) Heat transfer, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  44. 44.
    Vilfayeau S, Ren N, Wang Y, Trouvé A (2015) Numerical simulation of under-ventilated liquid-fueled compartment fires with flame extinction and thermally-driven fuel evaporation. Proc Combust Inst 35(3):2563–2571CrossRefGoogle Scholar
  45. 45.
    Maragkos G, Beji T, Merci B (2017) Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust Flame 181:22–38CrossRefGoogle Scholar
  46. 46.
    Le V, Marchand A, Verma S, White J, Marshall A, Rogaume T, Richard F, Luche J, Trouvé A (2018) Simulations of a turbulent line fire with a steady flamelet combustion model and non-gray gas radiation models. J Phys Conf Ser 1107:042009CrossRefGoogle Scholar
  47. 47.
    Chatterjee P, Meredith K, Wang Y (2017) Temperature and velocity distributions from numerical simulations of ceiling jets under unconfined, inclined ceilings. Fire Saf J 91:461–470CrossRefGoogle Scholar
  48. 48.
    Ren N, Wang Y, Vilfayeau S, Trouvé A (2016) Large eddy simulation of turbulent vertical wall fires supplied with gaseous fuel through porous burners. Combust Flame 169:194–208CrossRefGoogle Scholar
  49. 49.
    Cooper L (1988) Ceiling jet-driven wall flows in compartment fires. Combust Sci Technol 62(4–6):285–296CrossRefGoogle Scholar
  50. 50.
    McCaffrey B, Heskestad G (1976) A robust bidirectional low-velocity probe for flame and fire application. Combust Flame 26:125–127CrossRefGoogle Scholar
  51. 51.
    Overholt K, Floyd J, Ezekoye O (2016) Computational modeling and validation of aerosol deposition in ventilation ducts. Fire Technol 52(1):149–166CrossRefGoogle Scholar
  52. 52.
    Coupling OpenFOAM—Cast3m (2019) (Online).
  53. 53.
    Liedgren L, Hörnberg G, Magnusson T, Östlund L (2017) Heat impact and soil colors beneath hearths in northern Sweden. J Archaeol Sci 79:62–72CrossRefGoogle Scholar
  54. 54.
    Aldeias V, Dibble H, Sandgathe D, Goldberg P, McPherron S (2016) How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. J Archaeol Sci 67:64–79CrossRefGoogle Scholar
  55. 55.
    Ruan H, Frost R, Kloprogge J, Duong L (2002) Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim Acta Part A 58:967–981CrossRefGoogle Scholar
  56. 56.
    Borg R, Hajpal M, Török A (2013) The fire performance of limestone, vol 6. Application of Structural Fire EngineeringGoogle Scholar
  57. 57.
    Ferrier C, Debard E, Kervazo B, Brodard A, Guibert P, Baffier D, Feruglio V, Gely B, Geneste J, Maksud F (2014) Les parois chauffées de la grotte Chauvet–Pont d’Arc (Ardèche): caractérisation et chronologie. PALEO 25Google Scholar
  58. 58.
    Preston F, White H (1938) Observations on spalling. J Am Ceram Soc 17:137–144CrossRefGoogle Scholar
  59. 59.
    Geuzaine C, Remacle J (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Bordeaux, UMR CNRS 5295 I2MPessacFrance
  2. 2.Laboratoire Central de la Préfecture de PoliceParisFrance
  3. 3.Université de Toulouse, UMR CNRS 5608 TRACESToulouseFrance
  4. 4.Université de Bordeaux, UMR CNRS 5199 PACEAPessacFrance

Personalised recommendations