Experimental Study on the Optimum Concentration of Ferrocene in Composite Ultrafine Dry Powder

  • Hangchen Li
  • Dexu Du
  • Xinxin Guo
  • Min HuaEmail author
  • Xuhai Pan


The elimination of halon and frequent fire accidents have caused an urgent need for the development of high-efficient fire extinguishing agents. ABC dry powder has been paid much attention, and has become one of the most extensively used fire extinguishing agents nowadays owing to its wide applications in various fire protection fields. Therefore, to enhance the fire-extinguishing properties of ABC dry powder, ferrocene was used as the additive to develop a new composite ultrafine dry powder based on an ultrafine ABC dry powder product. Through flame inhibition tests, two performance indexes of the inhibition process, namely temperature drops and flame height variations, were adopted to measure the degree of flame suppression. The experimental results revealed that the temperature drops and flame height variations both increased and then decreased. Moreover, the composite ultrafine dry powder containing 0.7% ferrocene displayed the best inhibitory effect with the maximum temperature drop (152.9°C) and variation rate of flame height (14.01%). Thermogravimetric analysis and differential scanning calorimetry were used to analyze the thermal decomposition of the sample powders. Furthermore, based on the analysis results of the thermal decomposition temperature, weight loss, and other thermodynamic parameters of the sample powders, the reasons for performance advantages of composite ultrafine dry powder containing 0.7% ferrocene were clarified as the faster pyrolysis rate, more absorption of heat, stronger suffocation and chemical inhibition effect. Finally, possible speculations on the suppression mechanisms of composite ultrafine dry powder containing 0.7% ferrocene were proposed.


Compound dry powder Ferrocene Optimal concentration Inhibitory effect Suppression mechanism 



Funding was provided by National Natural Science Foundation of China (Grant No. 51704171), Postdoctoral Science Foundation of China (General Program) (Grant No. 2016M601796), Six Talent Peaks Project of Jiangsu (Grant No. 2014-XCL-010), Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Wofsy SC, McElroyp MB, Sze ND (1975) Freon consumption: implications for atmospheric ozone. Science 187:535–536. CrossRefGoogle Scholar
  2. 2.
    Salawitch RJ, Wofsy SC, McElroy MB (1988) Chemistry of OClO in the Antarctic stratosphere: implications for bromine. Planet Space Sci 36:213–224. CrossRefGoogle Scholar
  3. 3.
    Hamins A, Trees D, Seshadri K (1994) Extinction of nonpremixed flames with halogenated fire suppressants. Combust Flame 99:221–30. CrossRefGoogle Scholar
  4. 4.
    Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34:4. CrossRefGoogle Scholar
  5. 5.
    Gurchumelia L, Bezarashvili G, Chikhradze M et al (2009) Investigation of performance properties of novel composite fire-extinguishing powders based on mineral raw materials. IEEE Trans Eng Manag 64:337–343. CrossRefGoogle Scholar
  6. 6.
    Sheu GL, Zhang LQ (2009) Powder extinguishing agent and method for manufacturing the same. Patent 20090146098 A1, USGoogle Scholar
  7. 7.
    Liu H, Zong R, Gao J et al (2014) A good dry powder to suppress high building fires. APCBEE Proc 9:291–295. CrossRefGoogle Scholar
  8. 8.
    Kuang K, Chow WK, Ni X et al (2011) Fire suppressing performance of superfine potassium bicarbonate powder. Fire Mater 35(6):353–366. CrossRefGoogle Scholar
  9. 9.
    Like J, Moore TA, Mather JD (2000) Handheld fire extinguisher development. In: Paper presented at the Halon options technical working conference (HOTWC), Gaithersburg, MD, NISTSP984, National Institute of Standards and TechnologyGoogle Scholar
  10. 10.
    Brooks J, Berezovsky J, Dwyer MO (2002) Aerosol fire suppression for high rise structural applications via aircraft distribution using metalstorm technologies. In: Paper presented at the Halon options technical working conference (HOTWC), Albuquerque, NM, NISTSP984, National Institute of Standards and TechnologyGoogle Scholar
  11. 11.
    Ewing CT, Faith FR, Hughes JT et al (1989) Flame extinguishment properties of dry chemicals: extinction concentrations for small diffusion pan fires. Fire Technol 25:134–149. CrossRefGoogle Scholar
  12. 12.
    Kennington R, Woolhouse RA (1978) Preparation of the reaction product of urea and alkali metal hydroxide or carbonate. Patent US4107053, USGoogle Scholar
  13. 13.
    Kuang K, Huang X, Liao G (2008) A comparison between superfine magnesium hydroxide powders and commercial dry powders on fire suppression effectiveness. Process Saf Environ 86:182–188. CrossRefGoogle Scholar
  14. 14.
    Huang D, Wang X, Yang J (2015) Influence of particle size and heating rate on decomposition of BC dry chemical fire extinguishing powders. Part Sci Technol. CrossRefGoogle Scholar
  15. 15.
    Ni X, Kuang K, Yang D et al (2009) A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core–shell structure. Fire Saf J 44:968–975. CrossRefGoogle Scholar
  16. 16.
    Fleming JW, Reed MD, Zegers EJP et al (1998) Extinction studies of propane/air counterflow diffusion flames: the effectiveness of aerosols. In: Paper presented at the Halon options technical working conference (HOTWC), NIST SP 984, National Institute of Standards and Technology, Gaithersburg, MD, USAGoogle Scholar
  17. 17.
    Song F, Du Z, Cong X et al (2014) Experimental study on fires extinguishing properties of melamine phosphate powders. Proc Eng 84:535–542. CrossRefGoogle Scholar
  18. 18.
    McHale BG (2002) Mixed phase fire suppression systems: application and benefits. In: Paper presented at the Halon options technical working conference (HOTWC), NIST SPGoogle Scholar
  19. 19.
    Skaggs RR (2002) Assessment of the fire suppression mechanics for HFC-227ea combined with NaHCO3. In: Paper presented in proceedings of the Halon options technical working conferenceGoogle Scholar
  20. 20.
    Morton DAV (1999) Fire suppressant powder. Patent US5938969, USGoogle Scholar
  21. 21.
    Linteris GT, Knyazev VD, Babushok VI (2002) Inhibition of premixed methane flames by manganese and tin compounds. Combust Flame 129:221–238. CrossRefGoogle Scholar
  22. 22.
    Hessler G, Ucan N (2012) Fire extinguishing agent, in particular dry powder mixtures, method for the production thereof and use. Patent EP2496315, EPGoogle Scholar
  23. 23.
    Warnock WR, Flatt DV, Eastman JR (1971) Anti-reflash dry chemical agent. Patent US3553127, USGoogle Scholar
  24. 24.
    Linteris GT, Rumminger MD, Babushok V et al (2000) Flame inhibition by ferrocene and blends of inert and catalytic agents. In: Paper presented in proceedings of the combustion institute 28(2):2965–2972. CrossRefGoogle Scholar
  25. 25.
    Marc D, Rumminger MD, Reinelt D et al (1998) Inhibition of flames by iron pentacarbonyl. In: Paper presented at the Halon options technical working conferenceGoogle Scholar
  26. 26.
    Reinelt D, Linteris GT (1996) Experimental study of the flame inhibition effect of iron pentacarbonyl. In: Paper presented at the Halon options technical working conferenceGoogle Scholar
  27. 27.
    Rausch M, Vogel M, Rosenberg H (1957) Ferrocene: a novel organometallic compound. J Chem Educ 34(6):268. CrossRefGoogle Scholar
  28. 28.
    Koshiba Y, Iida K, Ohtani H (2015) Fire extinguishing properties of novel ferrocene/surfynol 465 dispersions. Fire Saf J 72:1–6. CrossRefGoogle Scholar
  29. 29.
    Staude BS, Bergmann U, Atakan B (2011) Experimental and numerical investigations of ferrocene-doped propene flames. Z Phys Chem 225:1179–1192. CrossRefGoogle Scholar
  30. 30.
    Linteris GT, Katta VR, Takahashi F (2004) Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames. Combust Flame 138:78–96. CrossRefGoogle Scholar
  31. 31.
    Carty P, Grant J, Metcalfe E (2010) Flame-retardancy and smoke-suppression studies on ferrocene derivatives in PVC. Appl Organomet Chem 10(2):101–111.;2-7 CrossRefGoogle Scholar
  32. 32.
    Rumminger MD, Linteris GT (2002) The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl. Combust Flame 128(1–2):145–164. CrossRefGoogle Scholar
  33. 33.
    Howard JB, Kausch WJ, Soot T et al (1980) Soot control by fuel additives. Prog Energy Combust Sci 6(3):263–276. CrossRefGoogle Scholar
  34. 34.
    Kasper M, Siegmann K (1998) The influence of ferrocene on PAH synthesis in acetylene and methane diffusion flames. Combust Sci Technol 140(1–6):333–350. CrossRefGoogle Scholar
  35. 35.
    Kasper M, Sattler K, Siegmann K et al (1999) The influence of fuel additives on the formation of carbon during combustion. J Aerosol Sci 30(2):217–225. CrossRefGoogle Scholar
  36. 36.
    Linteris GT, Rumminger MD, Babushok VI (2008) Catalytic inhibition of laminar flames by transition metal compounds. Prog Energy Combust Sci 34(3):288–329. CrossRefGoogle Scholar
  37. 37.
    Ni X, Kuang K, Wang X et al (2009) A new type of BTP/zeolites nanocomposites as mixed-phase fire suppressant: preparation, characterization, and extinguishing mechanism discussion. J Fire Sci 28:5–25. CrossRefGoogle Scholar
  38. 38.
    Font R, Fullana A, Conesa JA et al (2001) Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrol 58(2):927–941. CrossRefGoogle Scholar
  39. 39.
    Muthuraman M, Namioka T, Yoshikawa K (2010) Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy 87(1):141–148. CrossRefGoogle Scholar
  40. 40.
    Damartzis T, Vamvuka D, Sfakiotakis S et al (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238. CrossRefGoogle Scholar
  41. 41.
    Koshiba Y, Takahashi Y, Ohtani H (2012) Flame suppression ability of metallocenes (nickelocene, cobaltcene, ferrocene, manganocene, and chromocene). Fire Saf J 51:10–17. CrossRefGoogle Scholar
  42. 42.
    Bhattacharjee A, Rooj A, Roy D et al (2014) Thermal decomposition study of ferrocene [(C5H5)2Fe]. J Exp Phys 2014(5):601–612. CrossRefGoogle Scholar
  43. 43.
    Su CH, Chen CC, Liaw HJ et al (2014) The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Proc Eng 84:485–490. CrossRefGoogle Scholar
  44. 44.
    Kibert CJ, Dierdorf D (1994) Solid particulate aerosol fire suppressants. Fire Technol 30(4):387–399. CrossRefGoogle Scholar
  45. 45.
    Ewing CT, Faith FR, Romans JB et al (1995) Extinguishing class B fires with dry chemicals: scaling studies. Fire Technol 31(1):17–43. CrossRefGoogle Scholar
  46. 46.
    Ewing CT, Hughes JT, Carhart HW (1984) The extinction of hydrocarbon flames based on the heat-absorption processes which occur in them. Fire Mater 8(3):148–156. CrossRefGoogle Scholar
  47. 47.
    Ewing CT, Faith FR, Hughes JT et al (1989) Evidence for flame extinguishment by thermal mechanisms. Fire Technol 25(3):195–212. CrossRefGoogle Scholar
  48. 48.
    Romans JB, Hughes JT, Charhart HW (1992) Flame extinguishment properties of dry chemicals: extinction weights for small diffusion pan fires and additional evidence for flame extinguishment by thermal mechanisms. J Fire Prot Eng 4(2):35–51. CrossRefGoogle Scholar
  49. 49.
    Ewing CT, Beyler C, Carhar HW (1994) Extinguishment of class B flames by thermal and chemical actions; principles underlying a complete theory; prediction of flame extinguishing effectiveness. J Fire Prot Eng 6(1):23–54. CrossRefGoogle Scholar
  50. 50.
    Abdel-Kader A, Ammar AA, Saleh SI (1991) Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600°C. Thermochim Acta 176:293–304. CrossRefGoogle Scholar
  51. 51.
    Urano K, Kiyoura R (1970) Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind Eng Chem Process Des Dev 9(4):489–494. CrossRefGoogle Scholar
  52. 52.
    Halstead WD (1970) Thermal decomposition of ammonium sulphate. J Chem Technol Biot 20(4):4. CrossRefGoogle Scholar
  53. 53.
    Dyagileva LM, Mar’In VP, Tsyganova EI et al (1979) Reactivity of the first transition row metallocenes in thermal decomposition reaction. J Organomet Chem 175(1):63–72. CrossRefGoogle Scholar
  54. 54.
    Leonhardt A, Hampel S, Muller C et al (2006) Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chem Vapor Depos 12(6):380–387. CrossRefGoogle Scholar
  55. 55.
    Rumminger MD, Reinelt D, Babushok V et al (1999) Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbony. Combust Flame 123(1):82–94. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hangchen Li
    • 1
  • Dexu Du
    • 1
  • Xinxin Guo
    • 1
  • Min Hua
    • 1
    • 2
    Email author
  • Xuhai Pan
    • 1
    • 3
  1. 1.College of Safety and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory of Urban and Industrial SafetyNanjingChina
  3. 3.Institute of Fire Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations