Advertisement

Fibre Chemistry

, Volume 51, Issue 3, pp 175–181 | Cite as

Cellulose Fibers from Solutions of Bacterial Cellulose in N-Methylmorpholine N-Oxide

  • I. S. MakarovEmail author
  • L. K. Golova
  • M. I. Vinogradov
  • I. S. Levin
  • T. I. Gromovykh
  • N. A. Arkharova
  • V. G. Kulichikhin
Article
  • 43 Downloads

Fibers of bacterial cellulose were obtained for the first time from solutions in N-methylmorpholine N-oxide (NMMO) by using the concept of solid-phase dissolution of bacterial cellulose. The mechanism of solid-phase dissolution of bacterial cellulose in NMMO is examined with due regard to the structural and morphological characteristics of native bacterial cellulose. By investigating the structure of the fibers it was possible to reveal the different orientation of the main diffraction planes of the outer shell and inner part of the fiber reflecting the structural aspect of the shell–core morphology. The fibrillar morphology of the fiber was established by scanning electron microscopy. The thermal characteristics of the fibers of bacterial cellulose differ radically from the characteristics of fibers of plant origin in the preponderance of condensation processes that produce exo effects on the thermograms and lead to increase of the carbon residue. The mechanical characteristics of the obtained fibers were characterized.

Notes

The authors express their gratitude to L. K. Kuznetsova.

The work was carried out with support from the Russian Science Fund (grant No. 17-79-30108) using equipment from the Federal Scientific-Research Center “Crystallography and Photonics”, Russian Academy of Sciences with support from Minobrnauki.

References

  1. 1.
    Z. A. Rogovin, Chemistry of Cellulose [in Russian], Khimiya, Moscow (1972), 520 pp.Google Scholar
  2. 2.
    Z. A. Rogovin, L. S. Gal’braikh, Chemical Transformations and Modification of Cellulose [in Russian], Khimiya, Moscow (1979), 206 pp.Google Scholar
  3. 3.
    I. Sulaeva, U. Henniges, et al., Biotechnol. Adv., 33, No. 8, 1547-1571 (2015).CrossRefGoogle Scholar
  4. 4.
    T. I. Gromovykh, V. S. Sadykova, et al., Appl. Biochem. Microbiol., 53,. No. 1, 59-66 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Iguchi, S. Yamanaka, A. J. Budhiono, J. Mater. Sci., 35, No. 2, 261-270 (2000). DOI:  https://doi.org/10.1023/A:1004775229149.CrossRefGoogle Scholar
  6. 6.
    A. Okiyama, H. Shirae, et al., Food Hydrocolloids, 6, No. 5, 471-477 (1992). DOI:  https://doi.org/10.1016/S0268-005X(09)80032-5.CrossRefGoogle Scholar
  7. 7.
    Y. Jia, X. Wang, et al., Nanomaterials Nanotechnology, 7, 1-8 (2017). DOI:  https://doi.org/10.1177/1847980417707172.CrossRefGoogle Scholar
  8. 8.
    Fan Mi Han, Biotechnology of Bacterial Cellulose Using Strain Producer Gluconacetobacter hansenii GH-1/2008: Author’s Abstract of Thesis [in Russian], 03.01.06. M. V. Lomonosov Moscow State University (2013), 25 pp.Google Scholar
  9. 9.
    E. K. Gladysheva, Fundamental’nye Issledovaniya, No. 5 (Part.1), 53-57 (2015).Google Scholar
  10. 10.
    T. I. Gromovykh, S. V. Lutsenko, et al., Inter-Medikal, 13, . No. 7, 4-9 (2015).Google Scholar
  11. 11.
    W. K. Czaja, D. J. Young, et al., Biomacromolecules, 8, No. 1, 1-12 (2007). DOI:  https://doi.org/10.1021/bm060620d.CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Hu, J. M. Catchmark, Acta Biomaterialia, 7, No. 7, 2835-45 (2011). DOI: https://doi.org/10.1016/ j.actbio.2011.03.028.Google Scholar
  13. 13.
    Y.-J. Lee, S.-J. An, et al., Materials, 10, No. 320, 1-13 (2017). DOI:  https://doi.org/10.3390/ma10030320.CrossRefGoogle Scholar
  14. 14.
    L. K. Golova, V. G. Kulichikhin, S. P. Papkov, Vysokomol Soed., Ser. A, 27, No. 9, 1795-1809 (1986).Google Scholar
  15. 15.
    A. M. Bochek, Rus. J. Appl. Chemistry, 76, No. 11, 1711-1719 (2003). DOI:  https://doi.org/10.1023/B:RJAC.0000018669.88546.56.CrossRefGoogle Scholar
  16. 16.
    X. Lu, X. Shen, Carbohydrate Polymers, 86, No. 1, 239-244 (2011). DOI:  https://doi.org/10.1016/j.carbpol.2011.04.042.CrossRefGoogle Scholar
  17. 17.
    R. Yudianti, A. Syampurwadi, et al., Polymer Adv. Technol., 27, No. 8, 1102-1107 (2016). DOI:  https://doi.org/10.1002/pat.3782.CrossRefGoogle Scholar
  18. 18.
    M. Gericke, K. Schlufter, et al., Biomacromolecules, No. 10, 1188-1194 (2009).CrossRefGoogle Scholar
  19. 19.
    T. Budtova, P. Navard, Nordic Pulp & Paper Res. J., 30, No. 1, 99-104 (2015). DOI: https://doi.org/10.3183/npprj-2015- 30-01-p099-104.Google Scholar
  20. 20.
    US Pat. 3, 447, 939. 3.06.1969.Google Scholar
  21. 21.
    L. K. Golova, Fibre Chemistry, 28, No. 1, 5-16 (1996). DOI:  https://doi.org/10.1007/BF01130691.CrossRefGoogle Scholar
  22. 22.
    Q. Gao, X. Shen, X. Lu, Carbohydrate Polymers, 83, 1253-1256 (2011). DOI: https://doi.org/10.1016/j.carbpol.2010.09.029.CrossRefGoogle Scholar
  23. 23.
    G. Shanshan, W. Jianqing, J. Zhengwei, Carbohydrate Polymers, 87, No. 2, 1020-1025 (2012). DOI: https://doi.org/10.1016/j.carbpol.2011.06.040.CrossRefGoogle Scholar
  24. 24.
    Golova L. K., O. E. Borodina, et al., Fibre Chemistry, 32, No. 4, 243-251 (2000). DOI:  https://doi.org/10.1023/A:1004194913945.Google Scholar
  25. 25.
    T. I. Gromovykh et al., RF Pat., No. 2464307 (2012).Google Scholar
  26. 26.
    L. K. Goliova et al., RF Pat. 1645308 (1992).Google Scholar
  27. 27.
    D. L. Kaplan, Biopolymers from Renewable Resources, Springer Science & Business Media (2013), p. 420.Google Scholar
  28. 28.
    T. Takahashi, Fibers, 25, No. 3, 122-127 (1969). DOI:  https://doi.org/10.2115/fiber.25.122.CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, H. Shao, X. Hu, Polymer J., 34, No. 9, 666-673 (2002). DOI:  https://doi.org/10.1295/polymj.34.666.CrossRefGoogle Scholar
  30. 30.
    I. S. Makarov, L. K. Golova, et al., Fibre Chemistry, 49, No. 4, 231-236 (2017). DOI:  https://doi.org/10.1007/s10692-018-9874-6.CrossRefGoogle Scholar
  31. 31.
    H. Yang, R. Yan, et al., Fuel, 86, 1781-1788 (2007). DOI:  https://doi.org/10.1016/j.fuel.2006.12.013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. S. Makarov
    • 1
    Email author
  • L. K. Golova
    • 1
  • M. I. Vinogradov
    • 1
  • I. S. Levin
    • 1
  • T. I. Gromovykh
    • 2
  • N. A. Arkharova
    • 3
  • V. G. Kulichikhin
    • 1
  1. 1.A. V. Topchiev Petrochemical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.I. M. Semenov First Moscow State Medical InstituteMoscowRussia
  3. 3.Federal Scientific-Research Center “Crystallography and Photonics, Russian Academy of Sciences, A. V. Shubnikov Institute of Crystallography , Russian Academy of SciencesMoscowRussia

Personalised recommendations