Advertisement

Fibre Chemistry

, Volume 51, Issue 3, pp 157–163 | Cite as

The Mysteries of Science in Solving Applied Problems

  • A. A. BerlinEmail author
ROGOVIN LECTURES
  • 13 Downloads

The solution of various applied problems usually leads to the need to find answers to purely scientific fundamental questions and discover new phenomena. The article gives examples of such discoveries. It was discovered that flammability of polymeric materials can be decreased by dispersion of a material containing microencapsulated low-boiling flame retardants on exposure to an external fire source. The composition of the Earth’s atmosphere is analyzed in terms of dynamic equilibrium of the processes of oxygen production from forests and the consumption for their combustion during fires. The study of the amazing kinetics of the preparation of polyformaldehyde from formaldehyde and its cyclic trimer, trioxane, was explained, firstly, in the creation of the theory of reversible heterogeneous polymerization of trioxane and led to a fundamentally new, thermodynamic, method of regulating the molecular and supramolecular structure of the polymer. Secondly, on the example of polymerization of formaldehyde, a possible advantage of “diffusion” over “kinetic” modes was discovered. A similar effect was confirmed for the process of sulfuric acid alkylation of high-octane gasoline production.

References

  1. 1.
    A. A. Berlin, N. A. Khalturinsky, et A., Dokl. Akad Nauk SSSR, 269, 5, 889 (1983).Google Scholar
  2. 2.
    A. A. Berlin, G. B. Ayvazyan, etc., “The use of microencapsulated flame retardants to reduce the flammability of polymeric materials,” in: Fireproof Polymer Materials, Problems of Evaluating Their Properties [in Russian], abstracts, Tallinn (1981). p. 19.Google Scholar
  3. 3.
    A. A. Berlin, N. A. Khalturinsky, and A. Yu. Shaulov, Gorenie i Plazmokhimiya, 4, No. 2, 79-88 (2006).Google Scholar
  4. 4.
    A. A. Berlin, Sorosovsk. Obrazovat. Zh., 9, p. 57 (1996).Google Scholar
  5. 5.
    A. D. Margolin, Dokl. Akad. Nauk SSSR, 264, No. 4, 888-900 (1982).Google Scholar
  6. 6.
    A. A. Berlin and S. A. Wolfson, Kinetic Method in the Synthesis of Polymers [in Russian], Khimiya, Moscow (1973) p. 340.Google Scholar
  7. 7.
    A. A. Berlin, S. A. Wolfson, and N. S. Enikolopyan, Kinetics of Polymerization Processes [in Russian], Khimiya, Moscow (1978) p. 319.Google Scholar
  8. 8.
    A. A. Berlin and N. S. Enikolopyan, Vysokomol. Soed. A, 11, No. 12, p. 2671 (1969).Google Scholar
  9. 9.
    A. A. Berlin, K. A. Bogdanova, et A., Dokl. Akadem. Nauk SSSR, 184, No. 5, p. 1128 (1969).Google Scholar
  10. 10.
    A. A. Berlin, S. A. Wolfson, et A., Vysokomol. Soed. A, 12, No. 2, p. 443 (1970).Google Scholar
  11. 11.
    A. A. Berlin, G. A. Karyukhina, et A., Dokl. Akad. Nauk SSSR, 195, No. 5, p. 1147 (1970).Google Scholar
  12. 12.
    A. A. Berlin and N. S. Enikolopyan, Dokl. Akad. Nauk SSSR, 196, No. 5, p. 1111 (1971).Google Scholar
  13. 13.
    A. A. Berlin, K. A. Bogdanova, et A., Vysokomol. Soed. A, 14, No. 9, p. 1976 (1972).Google Scholar
  14. 14.
    A. A. Berlin, I. P. Kravchuk, et A., Vysokomol. Soed. A, 15, No. 3, p. 554 (1973).Google Scholar
  15. 15.
    A. A. Berlin, K. A. Bogdanova, et A., Dokl. Akad. Nauk SSSR, 211, No. 4, p. 874 (1973).Google Scholar
  16. 16.
    A. A. Berlin, G. A. Vorobyova, et A., Vysokomol. Soed. A, 16, No. 7, p. 1493 (1974).Google Scholar
  17. 17.
    A. A. Berlin, G. A. Vorobyova, et A., Dokl. Akad. Nauk SSSR, 214, No. 2, p. 373 (1974).Google Scholar
  18. 18.
    A. A. Berlin, K. A. Bogdanova, et A., Vysokomol. Soed. A, 17, No. 3, p. 643 (1975).Google Scholar
  19. 19.
    A. A. Berlin, K. A. Bogdanova, et A., Ibid., p. 658.Google Scholar
  20. 20.
    A. A. Berlin, R. Ya. Deberdeev, et A., Klei. Germetiki. Tekhnologii, No. 2, 2-7 (2009).Google Scholar
  21. 21.
    A. A. Berlin, K. Yu. Prochukhan, et A., Khim. Fiz., 38, No. 3, p. 12 (2019).Google Scholar
  22. 22.
    N. S. Yenikolopyan and S. A. Wolfson, Chemistry and Technology of Polyformaldehyde [in Russian], Khimiya, Moscow (1968) p. 204.Google Scholar
  23. 23.
    K. Yu. Prochukhan, E. R. Islamov, et A., Khim. Tekhnol. Toplov Masel, No. 2, p. 16 (1999).Google Scholar
  24. 24.
    E. R. Islamov, K. Y. Prochukhan, et A., Chem. A. Technol. Fuels and Oils, 35, No. 4, p. 195 (1999).Google Scholar
  25. 25.
    E. R. Islamov, K. Yu. Prochukhan, et A., Vestnik Bashkirskogo Universiteta (Bulletin of Bashkir University), 3, No. 3, p. 35 (1998).Google Scholar
  26. 26.
    E. R. Islamov, K. Yu. Prochukhan, et A., Vestnik Bashkirskogo Universiteta (Bulletin of Bashkir University), 3, No. 3, p. 40 (1999).Google Scholar
  27. 27.
    K. Yu. Prochukhan, A. A. Berlin, and Yu. A. Prochukhan, Vestnik Tekhnologicheskogo Universiteta, 21, No. 4, p. 19 (2018).Google Scholar
  28. 28.
    A. A. Berlin and N. S. Yenikolopyan, Vysokomol. Soed., 10A, No. 7, p. 1745 (1968).Google Scholar
  29. 29.
    A. A. Berlin, M. A. Khanimdzhanova, et A., Vysokomol. Soed., 10A, No. 7, p. 1496 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Semenov Institute of Chemical Physics of Russian Academy of SciencesMoscowRussia

Personalised recommendations