Advertisement

Fibre Chemistry

, Volume 51, Issue 2, pp 83–91 | Cite as

Ultrafine Fibers of Poly-(3-Hydroxybutyrate) with Zinc–Tetraphenylporphyrin Obtained by Electrospinning

  • A. A. Ol’khovEmail author
  • S. G. Karpova
  • P. M. Tyubaeva
  • A. V. Lobanov
  • A. G. Filatova
  • A. L. Iordanskii
Article
  • 14 Downloads

Ultrathin fibers of poly(3-hydroxybutyrate) (PHB) with a zinc–tetraphenylporphyrin complex (0-5%) were obtained by electrospinning. Optical microscopy, differential scanning calorimetry, electron paramagnetic resonance, and x-ray structural analysis were used to study the structure of the fibers. It was shown that addition of the ZnTPP complex to the PHB fiber increases the crystallinity and lowers the molecular mobility in the amorphous regions of the polymer. The action of heat on the fiber (annealing at 140°C) leads to significant increase of crystallinity and molecular mobility in the amorphous regions of fibers of PHB and of PHB with 1% of ZnTPP. With 3-5% content of the complexes the crystallinity of the fiber is substantially reduced. The results of the work make it possible to recommend the investigated materials for biomedical application as matrices with antibacterial activity

Notes

The work was carried out partly with a subsidy from the Institute of Chemical Physics, Russian Academy of Sciences, theme 0082-2014-0009 “Development of methods for creation of nanostructural polymers, biopolymers, and composite materials and their targeted modification with broad spectrum of application” AAAA-A17-117040610309-0 and the Russian Fundamental Research Fund (grant No. 18-29-05017=mk).

he crystallinity measurements were made by the DSC method on a Netsch DSC204 F1 instrument (Germany) (Collective Use Center, Institute of Biochemistry, Russian Academy of Sciences “New Materials and Technologies).

The authors express their gratitude to Prof. U. J. Hänggi (Biomer®, Germany) for providing the poly-3-hydroxybutyrate, to N. G. Shilkina for investigating the samples by the DSC method, and to A. V. Krivandin and O. V. Shatalova for investigating the samples by XPA.

References

  1. 1.
    L. Kong, G. R. Ziegler, Biomacromolecules, 13, 2247 (2012).CrossRefGoogle Scholar
  2. 2.
    J. D. Schiffman, C.A. Schauer, Polymer Rev., 48, No. 2, 317 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Xie, Y. Wang, et al., Ind. Eng. Chem. Res., 55, No. 26, 7116 (2016).CrossRefGoogle Scholar
  4. 4.
    A. A. Ol’khov, V. S. Akatov, et al., Khim. Volokna, No. 3, 90-95 (2017).Google Scholar
  5. 5.
    Y. Wang, J. Pan, X. Han, et al., Biomaterials, 29, No. 23, 3393 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Mergaert, A. Webb, et al., Appl. Environ. Microbiol., 59, No. 10, 3233 (1993).PubMedPubMedCentralGoogle Scholar
  7. 7.
    X. J. Loh, S. H. Goh, J. Li, Biomaterials, 28, No. 28, 4113 (2007).CrossRefGoogle Scholar
  8. 8.
    A. B. Solov’eva, V. E. Belyaev, et al., Zhurn. Fiz. Khimii, 79, No. 4, 740-750 (2005).Google Scholar
  9. 9.
    A. V. Chudinov, V. D. Rumyantseva, et al., Bioorg. Khim., 30, No. 1, 99-104 (2004).PubMedGoogle Scholar
  10. 10.
    I. I. Zharkova, O. V. Staroverova, et al., Biomed. Khim., 60, No. 5, 553 (2014).CrossRefGoogle Scholar
  11. 11.
    S. G. Karpova, A. A. Ol’khov, et al., Khim. Fizika, 35, No. 8, 59-71 (2016).Google Scholar
  12. 12.
    Y. Hu, H. Sato, et al., Polymer, 49, No. 19, 4204 (2008).CrossRefGoogle Scholar
  13. 13.
    A. A. Ol’khov, A. L. Iordanskii, et al., Khim. Volokna, No. 5, 8 (2015).Google Scholar
  14. 14.
    S. G. Karpova, A. A. Ol’khov, et al., Vysokomol. Soed., Ser. A, 59, No. 1, 53 (2017).Google Scholar
  15. 15.
    A. L. Iordanskii, A. A. Ol’khov, et al., Vysokomol. Soed., Ser. A, 59, No. 3, 273 (2017).Google Scholar
  16. 16.
    S. G. Karpova, A. A. Ol’khov, et al., Khim. Fizika, 37, No. 2, 64 (2018).Google Scholar
  17. 17.
    A. D. Adler, F. R. Longo, et al., J. Org. Chem., 32, 476 (1967).CrossRefGoogle Scholar
  18. 18.
    Yu. N. Filatov, Electrospinning of Fibrous Materials [in Russian], Neft’ i Gaz (1997), 294 pp.Google Scholar
  19. 19.
    A. L. Buchachenko, A. M. Vasserman, Stable Radicals [in Russian], Khimiya, Moscow (1973).Google Scholar
  20. 20.
    A. A. Olkhov, A. L. Iordanskii, G. E. Zaikov, J. Charac. Develop. Novel Mater., 6, No. 1, 9 (2014).Google Scholar
  21. 21.
    D. V. Petkieva, G. G. Alkhanishvili, et al., Vysokomol. Soed., Ser. A, 55, No. 2, 184 (2013).Google Scholar
  22. 22.
    S. G. Karpova, A. L. Iordanskii, et al.. Khim. Fizika, 32, No. 6. 15 (2013).Google Scholar
  23. 23.
    S. G. Karpova, A. A. Ol’khov, et al., Vysokomol. Soed. Ser. A, 58, No. 1, 61-72 (2016).Google Scholar
  24. 24.
    A. A. Ol’khov, S. G. Karpova, et al., Khim. Volokna, No. 4, 28-36 (2016).Google Scholar
  25. 25.
    S. G. Karpova. A. A. Ol’khov, et al., Khim. Fizika, 37, No. 2, 64-77 (2018).Google Scholar
  26. 26.
    A. V. Krivandin, O. V. Shatalova, A. L. Iordanskii, Vysokomol. Soed. Ser. B, 39, No. 11, 1865-1868 (199).Google Scholar
  27. 27.
    A. V. Krivandin, O. V. Shatalova, A. L. Iordanskii, Vysokomol. Soed., 39, No. 3, 540-544 (1997).Google Scholar
  28. 28.
    X. . Loh, S. H. Goh, J. Li, Biomaterials, 28, No. 28, 4113 (2007).CrossRefGoogle Scholar
  29. 29.
    B. K. Vainstein, Diffraction of X-Rays on Chain Molecules [in Russian], Akad. Nauk SSSR, Moscow (1963).Google Scholar
  30. 30.
    A. Kulkarni, V. A. Bambole, P. A. Mahanwar, Polymer-Plastics Technol. A. Eng., 49, No. 5, 427 (2010).CrossRefGoogle Scholar
  31. 31.
    D. E. Budil, S. Lee, et al., J. Magn. Res. A, 120, 155 (1996).CrossRefGoogle Scholar
  32. 32.
    S. G. Karpova, A. L. Iordanskii, A. A. Popov, Khim. Fizika, 31, No. 1, 79 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ol’khov
    • 1
    • 2
    • 3
    Email author
  • S. G. Karpova
    • 1
  • P. M. Tyubaeva
    • 1
    • 2
  • A. V. Lobanov
    • 3
  • A. G. Filatova
    • 3
  • A. L. Iordanskii
    • 3
  1. 1.N. M. Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.G. V. Plekhanov Russian Economics UniversityMoscowRussia
  3. 3.N. N. Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations