Advertisement

Fibre Chemistry

, Volume 51, Issue 2, pp 139–146 | Cite as

Van der Pauw Method for Measuring the Electrical Conductivity of Smart Textiles

  • I. N. TyurinEmail author
  • V. V. Getmantseva
  • E. G. Andreeva
Article
  • 30 Downloads

The electrical properties of conductive textile fabrics are investigated using the Van der Pauw method. The dependences of the change in the electrical resistance of conductive knitted fabrics under tension perpendicular to the warp direction, as well as at a particular angle to the warp direction of the fabric, are obtained. The data obtained are intended for use in the design of textile electronics, as well as “smart” and highly functional clothing made based on it.

References

  1. 1.
    E. G. Andreeva, V. V. Getmantseva, et al., “Innovative approaches and ways to improve the processes of designing garments” [in Russian], In: Coll. Works from Int. Sci. Tech. Conf. “Relevant problems of science in the development of innovative technologies for the regional economy”, KSTU, Kostroma (2010) p. 125-126.Google Scholar
  2. 2.
    I. N. Tyurin, V. V. Getmantseva, and E. G. Andreeva, Fibre Khim., 50, No. 1, 1-9 (2018).CrossRefGoogle Scholar
  3. 3.
    H. Y. Song and J. H. Lee, J. Text. Inst., 101, No. 8, 758-770 (2010).CrossRefGoogle Scholar
  4. 4.
    L. Li, W. M. Au, et al., Text. Res. J., 80, No. 10, 935-947 (2010).CrossRefGoogle Scholar
  5. 5.
    O. Atalay, Materials, 11, No. 5, p. 768 (2018).CrossRefGoogle Scholar
  6. 6.
    A. Achilli, A. Bonfiglio, and D. Pani, IEEE Sensors J., 18, No. 10, 4097-4107 (2018).CrossRefGoogle Scholar
  7. 7.
    J. Ren, C. Wang, et al., Carbon, 111, Jan., 622-630 (2017).Google Scholar
  8. 8.
    M. Stoppa and A. Chiolerio, Sensors, 14, No. 7, 11957-11992 (2014).CrossRefGoogle Scholar
  9. 9.
    D. A. Hardy and A. Moneta, et al., Fibers, 6, No. 2, p. 35 (2018).Google Scholar
  10. 10.
    G. Cho, S. Lee, and J. Cho, Intern. J. Human-Computer Interaction, 25, No. 6, 582-617 (2009).CrossRefGoogle Scholar
  11. 11.
    J. A. Rogers, T. Someya, and Y. Huang, Science, 327, No. 5973, 1603-1607 (2010).CrossRefGoogle Scholar
  12. 12.
    P. Xue, X. Tao, et al., In: Wearable Electronics and Photonics, Woodhead Publishing, Cambridge; CRC Press, Boca Raton (2005) p. 81-104.Google Scholar
  13. 13.
    M. Lu, R. Xie, et al., J. Appl. Polymer Sci., 133, No. 32 (2016) p. 43601.CrossRefGoogle Scholar
  14. 14.
    N. Maráková, P. Humpolíèek, et al., Appl. Surface Sci., No. 396, 169-176 (2017).Google Scholar
  15. 15.
    M. Baima and T. L. Andrew, Fibers, 6, No. 2, p. 41 (2018).CrossRefGoogle Scholar
  16. 16.
    Z. Lu, C. Mao, and H. Zhang, J. Materials Chem., 17, No. 3, 4265-4268 (2015).Google Scholar
  17. 17.
    O. Atalay, A. Tuncay, et al., J. Ind. Text., 46, No. 5, 1212-1240 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Mazzoldi, D. De Rossi, et al., Autex Res J., 2, No. 4, 199-204 (2002).Google Scholar
  19. 19.
    F. Zhu, J. Hu, et al., Fibers a. Polymers, 18, No. 2, 369-375 (2017).CrossRefGoogle Scholar
  20. 20.
    S. Vasile, I. Ciesielska, et al., Fibres a. Text. in Eastern Europe, 93, No. 4, 56-61 (2012).Google Scholar
  21. 21.
    L. M. Castano and A. Flatau, Smart Materials a. Structures, 23, No. 5, p. 053001 (2014).CrossRefGoogle Scholar
  22. 22.
    R. Q. Zhang, J. Q. Li, et al., Adv. Mater. Res., 194, 1489-1495 (2011).CrossRefGoogle Scholar
  23. 23.
    I. Baldoli, M. Maselli, et al., Smart Materials a. Structures, 26, No. 10, p. 104011 (2017).CrossRefGoogle Scholar
  24. 24.
    W. Tao, T. Liu, et al., Sensors, 12, No. 2, 2255-2283 (2012).CrossRefGoogle Scholar
  25. 25.
    F. Axisa, P. M. Schmitt, et al., IEEE Transac. on Inform. Technol. in Biomedicine, 9, No. 3, 325-336 (2005).CrossRefGoogle Scholar
  26. 26.
    K. Cherenack and L. Van Pieterson, J. Appl. Phys., 112, No. 9, 1-14 (2012).CrossRefGoogle Scholar
  27. 27.
    I. N. Tyurin, V. V. Getmantseva, et al., Proc. World Textile Confernce – 18th AUTEX Conference, 2018, Instanbul, Turkey, p. 1019-1022.Google Scholar
  28. 28.
    P. Eizentals, A. Katashev, et al., IFMBE Proceedings “World Congress on Medical Physics and Biomedical Engineering,” Springer, Singapore, 68/2, No. 12 (2018).Google Scholar
  29. 29.
    D. De Rossi, F. Carpi, et al., Autex Res. J., 3, No. 4, 180-185 (2003).Google Scholar
  30. 30.
    L. Beckmann, C. Neuhaus, et al., Physiol. Meas., 31, No. 2, 233-247 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Catrysse, R. Puersa, et al., Sensors a. Actuators A: Physical, 114, No. 2-3, 302-311 (2004).CrossRefGoogle Scholar
  32. 32.
    M. D. Husain, S. Naqvi, et al., AATCC J. Research, 3, No. 4, 1-12 (2016).CrossRefGoogle Scholar
  33. 33.
    B. C. Zhang, H. Wang, et al., Nanoscale, 28, No. 8 (4), 2123-2128 (2016).Google Scholar
  34. 34.
    F. Zhu, J. Hu, et al., Fibers a. Polymers, 18, No. 2, 369-375 (2017).CrossRefGoogle Scholar
  35. 35.
    L. Rattfält, M. Lindén, et al., Medical a. Biological Eng. A. Computing, 45, No. 12, 1251-1257 (2007).CrossRefGoogle Scholar
  36. 36.
    T. Ramachandran and C. Vigneswaran, J. Ind. Text., 39, No. 1, 81-93 (2009).CrossRefGoogle Scholar
  37. 37.
    Y. Tada, Y. Amano, et al., Fibers, 3, No. 4, 463-477 (2015).CrossRefGoogle Scholar
  38. 38.
    I. N. Tyurin, V. V. Getmantseva, and E. G. Andreeva, Proc. World Textile Conference – 18th AUTEX Conference, 2018, Instanbul, Turkey, p. 1041-1044.Google Scholar
  39. 39.
    V. S. Belgorodsky, I. N. Tyurin, et al., Design and Technologies, 64, 48-54 (2018).Google Scholar
  40. 40.
    I. N. Tyurin, V. V. Getmantseva, and E. G. Andreeva, Res. J. Pharm. Biol. Chem. Sci., 10, No. 1, 676-684 (2019).Google Scholar
  41. 41.
    F. Lorussi, W. Rocchia, et al., IEEE Sensors J., 4, No. 6, 807-818 (2004).CrossRefGoogle Scholar
  42. 42.
    I. N. Tyurin and V. V. Getmantseva, Sinergiya Nauk, 23, 1232-1238 (2018).Google Scholar
  43. 43.
    E. V. Sil’chenko and S. D. Nikolaev, Izv. VUZov Tekhnol. Tekst. Prom-sti, No. 6 (360), 59-64 (2015).Google Scholar
  44. 44.
    J. Farringdon, Techn. Text. Intern., 10, No. 8, 22-24 (2001).Google Scholar
  45. 45.
    E. G. Andreeva, E. V. Lunina, et al., Research and Development in the Field of Designing Garments [in Russian], Sputnik+, Moscow (2016) 169 p.Google Scholar
  46. 46.
    J. Lesnikowski and M. Tokarska, Text. Res. J., 84, No. 3, 290-302 (2014).CrossRefGoogle Scholar
  47. 47.
    E. V. Sil’chenko and S. D. Nikolaev, Izv. VUZov Tekhnol. Tekst. Prom-sti, No. 1 (361), 79-84 (2016).Google Scholar
  48. 48.
    M. Tokarska and K. Gniotek, J. Text. Inst., 106, No. 1, 9-18 (2015).CrossRefGoogle Scholar
  49. 49.
    M. Tokarska, M. Frydrysiak, and J. Ziêba, J. Mater. Sci.: Mater. in Electronics, 24, No. 12, 5061-5068 (2013).Google Scholar
  50. 50.
    J. Banaszczyk, G. De Mey, et al., Fibres & Text. In Eastern Europe, 17, No. 2 (73), 28-33 (2009).Google Scholar
  51. 51.
    L. J. Van der Pauw, Philips Res. Reports, 13, February, 1-9 (1958).Google Scholar
  52. 52.
    L. J. Van der Pauw, Philips Technical Review, 20, No. 8, 220-224 (1958).Google Scholar
  53. 53.
    T. Matsumura and Y. Sato, J. Modern Physics, 1, No. 5, 340-347 (2010).CrossRefGoogle Scholar
  54. 54.
    H. C. Montgomery, J. Appl. Phys., 42, No. 7, 2971-2975 (1971).CrossRefGoogle Scholar
  55. 55.
    GOST 26435-85, Elastic warp-knitted fabrics. Extension test methods [in Russian], Izd. Standartov, Moscow (1985) 6 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. N. Tyurin
    • 1
    Email author
  • V. V. Getmantseva
    • 1
  • E. G. Andreeva
    • 1
  1. 1.Russian State University Named after A. N. Kosygin (Technology. Design. Art)MoscowRussia

Personalised recommendations