Advertisement

Fibre Chemistry

, Volume 51, Issue 2, pp 109–116 | Cite as

Feasibility Assessment for Production of Sorbents Based on Secondary Carbon Fibers

  • Yu. V. KulikovaEmail author
  • E. A. Farberova
  • N. N. Slyusar’
  • G. V. Il’inykh
  • V. N. Korotaev
Article
  • 4 Downloads

A preliminary feasibility assessment for recycling composites reinforced with carbon fibers and cloths was performed. The recommended pyrolysis temperature ranges for extracting secondary carbon fiber from the samples were determined using synchronous thermal analysis as 450-500°C for disperse-reinforced composite EPAN-2B and 500-550°C for composite UTZF-2UMN. The sorption properties of the secondary carbon fibers after activation in CO2 were 222.4 m2/g specific sorption area by BET with 80 and 20% micro- and mesopores, respectively. The limiting adsorption volume for UTZF-2UMN composite fiber was 0.1169 cm3/g with a sorption capacity for benzene vapor of 0.134 cm3/g. The sorbents had high characteristic adsorption energies (by the Dubinin—Radushkevich method) that averaged 14.6 kJ/mol, which was only 30% less than primary fiber sorbents. The sample of UTZF-2UMN consisting of carbon cloth and phenol-formaldehyde resin had higher sorption properties with BET specific sorption areas for sorbents made of it that were three times higher than fibers made of EPAN-2B epoxide carbon-fiber plastic. The specific capacity for benzene vapor was 2.2 times higher, which was explained by the EPAN-2B fibers being highly contaminated by mineral impurities.

Notes

The results presented in the article were obtained under a State Task of the Ministry of Education and Science of the RF in the framework of “Advanced Science Projects” with Registration No. 5.9729.2017/8.9.

References

  1. 1.
    J. Keith, G. Oliveux, and A. Leeke, “Optimisation of solvolysis for recycling carbon fiber reinforced composites,” in: 17 thEuropean Conference on Composite Materials, Munich, Germany, 26-30th; http://dspace.lib.cranfield.ac.uk/handle/1826/10334
  2. 2.
    M. Holmes, Reinf. Plast., 58, No. 6, 38-45 (2014).CrossRefGoogle Scholar
  3. 3.
    B. E. Allen, “Characterization of reclaimed carbon fibers and their integration into new thermoset polymer matrices via existing composite fabrication techniques,” Master Thesis, North Carolina State University, Raleigh, NC, USA, 2008.Google Scholar
  4. 4.
    P. Ferabol, H. Kawakami, and B. Wade, J. Compos. Mater., 46, 1459-1473 (2012).CrossRefGoogle Scholar
  5. 5.
    S. J. Pickering, Composites, Part A, 37, No. 8, 1206-1215 (2006).Google Scholar
  6. 6.
  7. 7.
    E. Witten, T. Kraus, and M. Kuhnel, Composites Market Report 2016. Market Developments, Trends, Outlook and Challenges, 2016, 44 pp.Google Scholar
  8. 8.
    A. Iwanczuk et al., J. Polym. Environ., 23, No. 2, 277-282 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Mazumdar, D. Karthikeyan, State of the Composites Industry Report for 2017; http://compositesmanufacturingmagazine.com/2017/01/composites-industry-report-2017/4/
  10. 10.
    A. V. Petrov, M. S. Doriomedov, and S. Yu. Skripachev, Tr. VIAM (Scientific and Technical On-line Journal), No. 8, 9 (2015).Google Scholar
  11. 11.
    G. Oliveux, L. O. Dandy, and G. A. Leeke, Prog. Mater. Sci., 72, 61-99 (2015).CrossRefGoogle Scholar
  12. 12.
    J. M. Gosau, T. F. Wesley, and R. E. Allred, in: Proceedings of the 38 thSAMPE Technical Conference, Nov. 7-9, 2006, Dallas, Texas, USA.Google Scholar
  13. 13.
    R. Pinero-Hernanz, C. Dodds, et al., Composites, Part A, 39, 454-461 (2008).CrossRefGoogle Scholar
  14. 14.
    R. Pinero-Hernanz, J. Garcia-Serna, et al., J. Supercrit. Fluids, 46, 83-92 (2008).CrossRefGoogle Scholar
  15. 15.
    I. Okajima, K. Araya, et al., in: Proceedings of the 9 thInternational Symposium on Supercritical Fluids (ISSF), May 18-20, 2009, Arcachon, France.Google Scholar
  16. 16.
    G. Oliveux, J. L. Bailleul, et al., Composites, Part A, 43, 1809-1818 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Bai, Z. Wang, and L. Feng, Mater. Des., 31, 999-1002 (2010).CrossRefGoogle Scholar
  18. 18.
    C. C. Knight, C. Zeng, et al., Environ. Technol., 33, 639-644 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Liu, J. Liu, et al., Polym. Degrad. Stab., 97, 214-220 (2012).CrossRefGoogle Scholar
  20. 20.
    I. Okajima, K. Watanabe, and T. Sako, J. Adv. Res. Phys., No. 3, 1-4 (2012).Google Scholar
  21. 21.
    M. Sakuma, M. Koyama, and H. Fukuda, in: Proceedings of the 18th International Conference on Composite Materials (ICCM-18), Aug. 21-26, 2011, Jeju, Korea.Google Scholar
  22. 22.
    W. Von Gentzkow, D. Braun, and A.-P. Rudolf, CA Pat. 2341651, Mar. 9, 2000, PCT Filing Date: Aug. 16, 1999, Intern. Publ. Number: WO2000/012598.Google Scholar
  23. 23.
    W. Dang, M. Kubouchi, et al., Polymer, 43, 2953-2958 (2002).CrossRefGoogle Scholar
  24. 24.
    Y. Liu, L. Meng, et al., J. Appl. Polym. Sci., 94, No. 5, 1912-1916 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Li, P.-L. Xu, et al., Green Chem., 14, 3260-3263 (2012).CrossRefGoogle Scholar
  26. 26.
    V. V. Karmanov, “Development of environmentally safe carbon-fiber recycling technology,” Author’s Abstract of a Candidate Dissertation, Moscow, 1996, 16 pp.Google Scholar
  27. 27.
    T. Burchell et al., US Pat. No. 6,258,300 B1, Jul. 10, 2001.Google Scholar
  28. 28.
    Z. Yue and A. Vakili, J. Mater. Sci., 52, No. 21, 12913-12921 (2017).CrossRefGoogle Scholar
  29. 29.
    S.-J. Park and K.-D. Kim, Carbon, 39, No. 11, 1741-1746 (2001).CrossRefGoogle Scholar
  30. 30.
    H. An, B. Feng, and S. Su, Carbon, 47, No. 10, 2396-2405 (2009).CrossRefGoogle Scholar
  31. 31.
    T. Lee, C. Ooi, et al., Rev. Adv. Mater. Sci., 36, 118-136 (2014).Google Scholar
  32. 32.
    M. Endo, C. Kim, et al., Carbon, 36, 1633-1641 (1998).CrossRefGoogle Scholar
  33. 33.
    T. J. Mays, Carbon Materials for Advanced Technologies, Elsevier Science Ltd., Oxford, 1999, 540 pp.Google Scholar
  34. 34.
    T. Kim and D. D. L. Chung, Carbon, 41, 2436-2440 (2003).CrossRefGoogle Scholar
  35. 35.
    E. Kablov, “Composites Today and Tomorrow,” in: Metals of Eurasia [in Russian], Nauka i Tekhnologii, Moscow, 2015, pp. 36-39.Google Scholar
  36. 36.
    J.-H. Zhu, M. Zhu, et al., Materials, 7, 5438-5453 (2014); doi:  https://doi.org/10.3390/ma7085438.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    N. Saito, K. Aoki, Y. Usui, et al., Chem. Soc. Rev., 40, No. 7, 3824-3834 (2011); doi:  https://doi.org/10.1039/c0cs00120a.CrossRefPubMedGoogle Scholar
  38. 38.
    S. Gupta and N.-H. Tai, J. Mater. Chem. A, 4, 1550-1565 (2016).CrossRefGoogle Scholar
  39. 39.
    S. M. Anisuzzaman et al, J. King Saud Univ., Sci., 27, 318-330 (2015).CrossRefGoogle Scholar
  40. 40.
    OOO Sinerdzhi-Eko [Electronic resource], 2018; https://s-eko.ru/p260596087-aktivirovannaya-ugolnovoloknistaya-sorbtsionnofiltruyuschaya.html; accessed Sept. 16, 2018.
  41. 41.
    OAO Svetlogorskoe PO Khimvolokno, [Electronic resource], 2018; www.sohim.by; accessed Jun. 20, 2018.
  42. 42.
    S. A. Andriyantseva, A. V. Bondarenko, and G. A. Petukhova, Sorptsionnye Khromatogr. Protsessy, 12, No. 1, 114-118 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Kulikova
    • 1
    Email author
  • E. A. Farberova
    • 1
  • N. N. Slyusar’
    • 1
  • G. V. Il’inykh
    • 1
  • V. N. Korotaev
    • 1
  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations