Advertisement

Fibre Chemistry

, Volume 51, Issue 1, pp 26–31 | Cite as

Composite Fibers From Cellulose Solutions with Additives of Bis (Trimethylsilyl) Acetylene and Alkoxysilanes: Rheology, Structure and Properties

  • I. S. MakarovEmail author
  • L. K. Golova
  • L. K. Kuznetsova
  • M. V. Mironova
  • M. I. Vinogradov
  • M. V. Bermeshev
  • I. S. Levin
  • V. G. Kulichikhin
COMPOSITE FIBER MATERIALS
  • 19 Downloads

Solid–state dissolution in N–methylmorpholine N–oxide was used to obtain solutions of mixtures derived from cellulose and various organosilicon additives, namely, tetraethoxysilane, vinyltriethoxysilane, and bis (trimethylsilyl)acetylene. Optical study of the phase composition and morphology of these solutions showed that they are two–phase emulsions with a rather broad size distribution of particles of the dispersed phase. The nature of the flow of the mixed systems in continuous and dynamic deformation when the rheological behavior is monotypic depends to a certain extent on the nature of the organosilicon additive. Dry wet–jet spinning was used to obtain composite fibers. The structure and morphology of these fibers were studied as well as their mechanical and thermal properties. Analysis of the x–ray patterns diffractograms of the cellulose and composite fibers showed that the introduction of organosilicon additives into the cellulose matrix leads to less structural ordering of the cellulose. The mechanical characteristics of the composite fibers show some decrease in the strength and deformation characteristics with an increase in the elastic modulus in comparison with the cellulose fibers. Heat treatment of the cellulose and composite fibers up to 1000°C revealed a significant increase in the mass of carbon residue, whose amount depends on the type of additive.

Notes

This work was carried out with the financial support of the Russian Basic Research Fund, Grant No. 16–33–60218 mol-_a_dk.

References

  1. 1.
    S. Peng, H. Shao, and X. Hu, J. Appl. Polymer Sci., 90, No. 7, 1941–1947 (2003), doi:  https://doi.org/10.1002/app.12879.CrossRefGoogle Scholar
  2. 2.
    G. Goldhalm, Lenzinger Ber., 90, 58–63 (2012).Google Scholar
  3. 3.
    A. G. Dumanle and A. H. Windle, J. Mater. Sci., 47, No. 10, 4236–4250 (2012), doi: https://doi.org/10.1007/s10853–011–6081–8.Google Scholar
  4. 4.
    M. E. Kazakov, A. M. Trushnikov, and M. L. Yunitskaya, Russian Federation Pat. 2045472 (1992).Google Scholar
  5. 5.
    A. M. Trushnikov, M. E. Kazakov, et al., Russian Federation Pat. 2047674 (1993).Google Scholar
  6. 6.
    P. Olri, Russian Federation Pat. 2256013 (2005).Google Scholar
  7. 7.
    J. Y. Hyuk, J. Y. Min, and L. S. Hong, J. Korean Soc. Safety, 31, No., 66–73 (2016), doi:  https://doi.org/10.14346/JKOSOS.2016.31.066.CrossRefGoogle Scholar
  8. 8.
    A. A. Konkin, Carbon and Other Heat–Resistant Fiber Materials [in Russian], Khimiya, Moscow (1974), p. 376.Google Scholar
  9. 9.
    I. Wizon and J. A. Robertson, J. Polymer Sci., Part C, No. 19, 267–281 (1967).Google Scholar
  10. 10.
    I. S. Makarov, L. K. Golova, et al., Fibre Chemistry, 49, No. 2, 101–107 (2017), doi: 10.1007/s10692–017–9851–5.Google Scholar
  11. 11.
    L. K. Golova, Russian Federation Pat. 1645308 (1992).Google Scholar
  12. 12.
    G. V. Vinogradov and A. Ya. Malkin, Polymer Rheology [in Russian], Khimiya, Moscow (1977).Google Scholar
  13. 13.
    V. G. Kulichikhin, I. Yu. Skvortsov, et al., Adv. Polymer Technol., 37, No. 4, 1099–1113 (2018), doi:  https://doi.org/10.1002/adv.21761.CrossRefGoogle Scholar
  14. 14.
    E. N. J. Ford and Sh. K. Mendon, et al., J. Eng. Fiber Fabr., 5, No. 1, 10–20 (2010).Google Scholar
  15. 15.
    I. S. Makarov, L. K. Golova, et al., Fibre Chemistry, 49, No. 4, 231-236 (2017), doi: https://doi.org/10.1007/s10692–018–9874–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. S. Makarov
    • 1
    Email author
  • L. K. Golova
    • 1
  • L. K. Kuznetsova
    • 1
  • M. V. Mironova
    • 1
  • M. I. Vinogradov
    • 1
  • M. V. Bermeshev
    • 1
  • I. S. Levin
    • 1
  • V. G. Kulichikhin
    • 1
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisMoscowRussia

Personalised recommendations