Fibre Chemistry

, Volume 50, Issue 1, pp 38–41 | Cite as

Search for an Object in an Image by Image Difference Method to Find Contours of a Natural Leather Blank in Pattern Cutting Process

  • F. V. MurashkoEmail author
  • E. A. Ryzhkova
  • O. M. Vlasenko

It is proposed to use the difference of matrixes of two images for getting data on the shape of a scanned object. The possibility of application of an algorithm in leather industry for natural leather pattern cutting is explored. The types of noises and the method of their removal are given.


  1. 1.
    E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 4th ed., Academic Press, San Diego (2012), p. 912.Google Scholar
  2. 2.
    E. I. Dyatlov, Mathemat. Mash. Sistemy, No. 2, 32-40 (2013).Google Scholar
  3. 3.
    T. T. Ch. Bui and V. G. Spitsyn “Analysis of methods of distinguishing edges in digital images,” Dokl. Tomsk. Gos. Univ. Sistem Uprav. Radioelektroniki, No. 2-2 (22), 221-223 (2010).Google Scholar
  4. 4.
    D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, MIT Press, Cambridge, Massachusetts (2010), p. 428.CrossRefGoogle Scholar
  5. 5.
    I. A. Martynov, Molodoi Ychenyi, 1, No. 8, 80-83 (2011).Google Scholar
  6. 6.
    G. Bradski and A. Kaehler, Learning OpenCV, O’Reilly, Sebastopol, California, USA (2008), p. 580.Google Scholar
  7. 7.
    A. A. Luk’yanitsa and A. G. Shishkin, Digital Processing of Video Images [in Russian], Ai-Es-Es Press (2009), p. 518.Google Scholar
  8. 8.
    A. Yu. Tropchenko and A. A. Tropchenko, Methods of Secondary Processing and Recognition of Images: A Textbook [in Russian], Univ. ITMO, St. Petersburg (2015), p. 215.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. V. Murashko
    • 1
    Email author
  • E. A. Ryzhkova
    • 1
  • O. M. Vlasenko
    • 1
  1. 1.A. N. Kosygin Russian State University of Technology, Design, and ArtMoscowRussia

Personalised recommendations