Advertisement

Functional Analysis and Its Applications

, Volume 52, Issue 4, pp 308–310 | Cite as

The Topological Support of the z-Measures on the Thoma Simplex

  • G. I. OlshanskiEmail author
Brief Communications
  • 2 Downloads

Abstract

The Thoma simplex Ω is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on Ω depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space Ω.

Key words

z-measure Poisson–Dirichlet distribution topological support symmetric function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Borodin and G. Olshanski, Math. Res. Lett., 5:6 (1998), 799–816.MathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Borodin and G. Olshanski, Comm. Math. Phys., 211:2 (2000), 335–358.MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Borodin and G. Olshanski, European J. Combin., 26:6 (2005), 795–834.MathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Borodin and G. Olshanski, Probab. Theory Related Fields, 144:1–2 (2009), 281–318.CrossRefGoogle Scholar
  5. [5]
    S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986.CrossRefzbMATHGoogle Scholar
  6. [6]
    S. Feng, The Poisson–Dirichlet Distribution and Related Topics. Models and Asymptotic Behaviors, Springer-Verlag, Heidelberg, 2010.Google Scholar
  7. [7]
    S. V. Kerov, Funkts. Anal. Prilozhen., 34:1 (2000), 51–64; English transl.: Functional Anal. Appl., 34:1 (2000), 45–51.CrossRefGoogle Scholar
  8. [8]
    S. Kerov, G. Olshanski, and A. Vershik, C. R. Acad. Sci. Paris Sér. I, 316:8 (1993), 773–778.MathSciNetGoogle Scholar
  9. [9]
    S. Kerov, G. Olshanski, and A. Vershik, Invent. Math., 158:3 (2004), 551–642.MathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Korotkikh, Transition functions of diffusion processes with the Jack parameter on the Thoma simplex, https://arxiv.org/abs/1806.07454.Google Scholar
  11. [11]
    G. Olshanski, Int. Math. Res. Notices, 2010:6 (2010), 1102–1166.Google Scholar
  12. [12]
    E. Strahov, J. Algebra, 323:2 (2010), 349–370.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia
  3. 3.Department of MathematicsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations