Advertisement

Modeling of rigidity dependent CORSIKA simulations for GRAPES-3

  • B. HariharanEmail author
  • S. R. Dugad
  • S. K. Gupta
  • Y. Hayashi
  • S. S. R. InbanathanEmail author
  • P. Jagadeesan
  • A. Jain
  • S. Kawakami
  • P. K. Mohanty
  • B. S. Rao
Original Article
  • 8 Downloads

Abstract

The GRAPES-3 muon telescope located in Ooty, India records 4 × 109 muons daily. These muons are produced by interaction of primary cosmic rays (PCRs) in the atmosphere. The high statistics of muons enables GRAPES-3 to make precise measurement of various sun-induced phenomenon including coronal mass ejections (CME), Forbush decreases, geomagnetic storms (GMS) and atmosphere acceleration during the overhead passage of thunderclouds. However, the understanding and interpretation of observed data requires Monte Carlo (MC) simulation of PCRs and subsequent development of showers in the atmosphere. CORSIKA is a standard MC simulation code widely used for this purpose. However, these simulations are time consuming as large number of interactions and decays need to be taken into account at various stages of shower development from top of the atmosphere down to ground level. Therefore, computing resources become an important consideration particularly when billion of PCRs need to be simulated to match the high statistical accuracy of the data. During the GRAPES-3 simulations, it was observed that over 60% of simulated events don’t really reach the Earth’s atmosphere. The geomagnetic field (GMF) creates a threshold to PCRs called cutoff rigidity Rc, a direction dependent parameter below which PCRs can’t reach the Earth’s atmosphere. However, in CORSIKA there is no provision to set a direction dependent threshold. We have devised an efficient method that has taken into account of this Rc dependence. A reduction by a factor \(\sim \)3 in simulation time and \(\sim \)2 in output data size was achieved for GRAPES-3 simulations. This has been incorporated in CORSIKA version v75600 onwards. Detailed implementation of this along the potential benefits are discussed in this work.

Keywords

Cosmic rays Geomagnetic field Rigidity CORSIKA 

Notes

Acknowledgements

We thank Dr. T. Pierog and Dr. D. Heck for implementing this modification in official CORSIKA releases to benefit cosmic ray community. We thank D.B. Arjunan, A. Chandra, V. Jeyakumar, S. Kingston, K. Manjunath, S.D.Morris, S. Murugapandian, P.K. Nayak, S. Pandurangan, B. Rajesh, P.S. Rakshe, K. Ramadass, K. Ramesh, L.V. Reddy, V. Santhoshkumar, M.S. Shareef, C. Shobana, R. Sureshkumar, and M. Zuberi for their assistance in running the GRAPES-3 experiment. We thank the anonymous reviewer for his careful reading and recommendation for publishing our paper.

References

  1. 1.
    Mohanty, P.K., et al.: Fast fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment. Astropart. Phys. 79, 23–30 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Arunbabu, K.P., et al.: Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment. Astropart. Phys. 94, 22–28 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Hariharan, B., et al.: Measurement of the electrical properties of a thundercloud through muon imaging by the GRAPES-3 experiment. Phys. Rev. Lett 122, 105101 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: Report FZKA 6019. Forschungszentrum Karlsruhe; available from http://www-ik.fzk.de/corsika/physics_description/corsika_phys.html (1998)
  5. 5.
    Monte Carlo simulation of proton-induced cosmic-ray cascades in the atmosphere, UCRL-TM-229452Google Scholar
  6. 6.
    AIRES: a system for air shower simulations, arXiv:astro-ph/9911331v1
  7. 7.
    Mohanty, P.K., et al.: Transient weakening of Earth’s magnetic shield probed by a cosmic ray burst. Phys. Rev. Lett. 117, 171101 (2016)CrossRefGoogle Scholar
  8. 8.
    Mohanty, P.K., et al: Was the cosmic ray burst detected by the GRAPES-3 muon telescope on 22 June 2015 caused by a transient weakening of the geomagnetic field or by an interplanetary anisotropy?. Phys. Rev. D 97, 082001 (2018)CrossRefGoogle Scholar
  9. 9.
    Hariharan, B., et al.: Proceedings of Science PoS(ICRC2015)448Google Scholar
  10. 10.
    Gupta, S.K., et al.: GRAPES-3 a high-density air shower array for studies on the structure in the cosmic-ray energy spectrum near the knee. Nucl. Instrum. Methods A 540, 311 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Hayashi, Y., et al.: A large area muon tracking detector for ultra-high energy cosmic ray astrophysics - the GRAPES-3 experiment. Nucl. Instrum. Methods A 545, 643 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Mohanty, P.K., et al.: Proceedings of Science PoS (ICRC2017) 357Google Scholar
  13. 13.
    Smart, D. F., Shea, M. A.: A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Adv. Space Res. 36, 2012 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Finlay, C., et al.: International geomagnetic reference field: the eleventh generation. Geophys. J. Int. 183, 1216 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Pierog, T., et al.: arXiv:1306.0121 [hep-ph] (2013)
  16. 16.
    Kalmykov, N.N., Ostapchenko, S.S., Pavlov, A.I.: Quark-gluon-string model and EAS simulation problems at ultra-high energies. Nucl. Phys. B (Proc. Suppl.) 52B, 17 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Ostapchenko, S.S.: Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D 83, 014018 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City (USA), vol. 1, p. 415 (1999)Google Scholar
  19. 19.
    Ahn, E.-J., Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D 80, 094003 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Werner, K.: Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies. Phys. Rep. 232, 87 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Ranft, J: Dual parton model at cosmic ray energies. Phys. Rev. D 51, 64 (1995). arXiv:hep-ph/9911213 and arXiv:hep-ph/9911232 ADSCrossRefGoogle Scholar
  22. 22.
    Drescher, H.J., Hladik, M., Ostapchenko, S., Pierog, T., Werner, K.: Parton-based Gribov-Regge theory. Phys. Rep. 350, 93 (2001). (arXiv:hep-ph/0007198 (2000))ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Fesefeldt, H.: Report PITHA-85/02 (1985), RWTH Aachen; available from: http://cds.cern.ch/record/162911/files/CM-P00055931.pdf
  24. 24.
    Fassò, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, O., Empl, A., Ranft, J.: The physics models of FLUKA: status and recent developments. In: Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA (USA), March 24–28, 2003 (paper MOMT005); eConf C0303241. arXiv:hep-ph/0306267; http://www.fluka.org/references.html (2003)
  25. 25.
    Bass, S.A., et al.: Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 225 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Bleicher, M, et al.: Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999). http://urqmd.org/ ADSCrossRefGoogle Scholar
  27. 27.
    Severe Space Weather Events–Understanding Societal and Economic Impacts: A Workshop Report (National Academies Press, Washington, 2008).  https://doi.org/10.17226/12507. http://www.oecd.org/gov/risk/46891645.pdf

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia
  2. 2.The GRAPES-3 ExperimentCosmic Ray LaboratoryOotyIndia
  3. 3.The American CollegeMaduraiIndia
  4. 4.Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations