Advertisement

Characterizing the dead time of the ECLAIRs camera on board the mission SVOM

  • A. Bajat
  • O. Godet
  • J.-L. Atteia
  • S. Maestre
  • D. Rambaud
  • V. Waegebaert
  • C. Amoros
  • S. Bordon
  • S. Delaigue
  • M. Galliano
  • B. Houret
  • K. Lacombe
  • P. Mandrou
  • W. Marty
  • R. Pons
  • P. Ramon
Original Article

Abstract

French (CNES) and Chinese (CNSA) space agencies collaborate to build the SVOM (Space-based multi-band Variable Object Monitor) mission due to be launched in 2021 to study gamma-ray bursts and high-energy transients. The SVOM prime instrument, ECLAIRs, will detect and localize GRBs autonomously as well as provide a spectral and temporal characterization of the GRB prompt emission. ECLAIRs is expected to detect around 200 GRBs during the 3 year nominal lifetime of the mission. ECLAIRs is a wide-field (\(\sim 2 \text {sr}\)) coded mask camera with a detection plane made of 8 independent sectors of 800 Schottky CdTe detectors working in the 4-150 keV energy range. Each sector is connected to independent readout electronics. In this paper, we focus on the study of the temporal performance and we estimate how dead time will affect bright transient lightcurves. We discuss the analytical model based on simulations over a large range of source count rates on a dedicated test bench. We show that dead time will not significantly affect ECLAIRs data, even for the brightest GRBs (3.7% of lost counts for a count rate of 105 counts.s− 1 over the detection plane in the energy range 4−150 keV) and our model can nicely correct the parts of the lightcurves which are the most affected by dead time effects for very bright GRBs.

Keywords

Dead time SVOM ECLAIRs Gamma-rays bursts Readout electronics Instrumentation 

Notes

Acknowledgements

This work is supported by the CNES and the région Midi-Pyrénées.

References

  1. 1.
    MacFadyen, A.I., Woosley, S.E.: Collapsars: gamma-ray bursts and explosions in failed supernovae. Astrophys. J. 524(1), 262 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    G. ray burst Monitor, fermi, ligo collaboration, et al.: Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a. The Astrophysical Journal Letters 848:L13, 27 (2017)Google Scholar
  3. 3.
    Paul, J., Wei, J., Basa, S., Zhang, S.N.: The chinese–french svom mission for gamma-ray burst studies. Comptes Rendus Physique 12(3), 298 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Godet, O., Nasser, G., Cordier, B., Mandrou, P., Barret, D., Triou, H., Pons, R., Amoros, C., Bordon, S., Gevin, O., et al.: (International society for optics and photonics) in SPIE astronomical telescopes+ instrumentation (2014)Google Scholar
  5. 5.
    Yongwei, D., Bobing, W., Yanguo, L., Yongjie, Z., Shuangnan, Z.: Svom gamma ray monitor, science China, physics, mechanics and astronomy (2009)Google Scholar
  6. 6.
    Götz, D., Adami, C., Basa, S., Beckmann, V., Burwitz, V., Chipaux, R., Cordier, B., Evans, P., Godet, O., Goosmann, R., Meidinger, N., Meuris, A., Motch, C., Nandra, K., O’Brien, P., Osborne, J.P., Perinati, E., Rau, A., Willingale, R., Mercier, K., Gonzalez, F.: . In: Proceedings of Swift: 10 years of discovery (SWIFT 10), held 2-5 December 2014 at La Sapienza University, Rome, Italy, id.74, pp. 74 (2014)Google Scholar
  7. 7.
    Tianzhou, W., Qiu, Y., Hongbo, C., Jingsong, D.: A fast onboard star-extraction algorithm optimized for the Svom visible telescope, science China, physics, mechanics and astronomy (2009)Google Scholar
  8. 8.
    Feng, T., Du, Z., Sun, Y., Wei, J., Bi, J., Liu, J.: . In: IEEE International Congress on (IEEE, 2017) in big data (BigData Congress), pp 224–231 (2017)Google Scholar
  9. 9.
    Wei, J., Cordier, B., Antier, S., Antilogus, P., Atteia, J.L., Bajat, A., Basa, S., Beckmann, V., Bernardini, M., Boissier, S., et al.: The deep and transient universe in the svom era: new challenges and opportunities-scientific prospects of the svom mission (2016)Google Scholar
  10. 10.
    Nasser, G.: Characterization of modules of the eclairs’ detection plane for the mission svom. Ph.D. thesis, université de Toulouse université Toulouse III-paul Sabatier (2015)Google Scholar
  11. 11.
    Gevin, O., Baron, P., Coppolani, X., Daly, F., Delagnes, E., Limousin, O., Lugiez, F., Meuris, A., Pinsard, F., Renaud, D.: Idef-x eclairs: a cmos asic for the readout of cdte and cdznte detectors for high resolution spectroscopy. IEEE Trans. Nucl. Sci. 56(4), 2351 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Yadav, J., Misra, R., Chauhan, J.V., Agrawal, P., Antia, H., Pahari, M., Dedhia, D., Katoch, T., Madhwani, P., Manchanda, R., et al.: Astrosat/laxpc reveals the high-energy variability of grs 1915 + 105 in the χ class. Astrophys. J. 833(1), 27 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Krimm, H.A., Holland, S.T., Corbet, R.H., Pearlman, A.B., Romano, P., Kennea, J.A., Bloom, J.S., Barthelmy, S.D., Baumgartner, W.H., Cummings, J.R., et al.: The swift/bat hard x-ray transient monitor. Astrophys. J. Suppl. Ser. 209(1), 14 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Palmer, D.M., Barthelmy, S., Gehrels, N., Kippen, R., Cayton, T., Kouveliotou, C., Eichler, D., Wijers, R., Woods, P., Granot, J., et al.: A giant γ-ray flare from the magnetar sgr 1806–20. Nature 434(7037), 1107 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Knoll, G.F.: Radiation detection and measurement. John Wiley & Sons, New York (1989)Google Scholar
  16. 16.
    Agostinelli, S., et al.: Geant4 user’s guide for application developers, dec. 2010. Nucl. Instr. Meth. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Piran, T., et al.: Variability in gamma-ray bursts: a clue. Astrophys. J. 485 (1), 270 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Meegan, C., Lichti, G., Bhat, P., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., et al.: The fermi gamma-ray burst monitor. Astrophys. J. 702(1), 791 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Briggs, M.S., Paciesas, W.S., Pendleton, G.N., Meegan, C.A., Fishman, G.J., Horack, J.M., Brock, M., Kouveliotou, C., Hartmann, D.H., Hakkila, J.: Batse observations of the large-scale isotropy of gamma-ray bursts, The Astrophysical Journal (1996)Google Scholar
  20. 20.
    Antier-Farfar, S.: The Gamma-Ray Detection by Eclairs Telescope for the French Mission Svom. Ph.D. thesis, Université Paris-Saclay (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. Bajat
    • 1
  • O. Godet
    • 1
  • J.-L. Atteia
    • 1
  • S. Maestre
    • 1
  • D. Rambaud
    • 1
  • V. Waegebaert
    • 1
  • C. Amoros
    • 1
  • S. Bordon
    • 1
  • S. Delaigue
    • 1
  • M. Galliano
    • 1
  • B. Houret
    • 1
  • K. Lacombe
    • 1
  • P. Mandrou
    • 1
  • W. Marty
    • 1
  • R. Pons
    • 1
  • P. Ramon
    • 1
  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance

Personalised recommendations