Skip to main content
Log in

Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echelle Spectrograph. We show that our results match well with a popular commercial ray tracing software. The model is further optimized using Thorium Argon calibration lamp exposures taken during the preliminary alignment of the instrument. The model predictions matched the calibration frames at a level of 0.08 pixel. Monte Carlo simulations were performed to show the photon noise effect on the model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baranne, A., Queloz, D., Mayor, M., Adrianzyk, G., Knispel, G., Kohler, D., Lacroix, D., Meunier, J.-P., Rimbaud, G., Vin, A.: ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser 119, 373–390 (1996)

    Article  ADS  Google Scholar 

  2. Ballester, P., Rosa, M.R.: Modelling Echelle spectrographs. Astron. Astrophys. Suppl. Ser. 126, 563–571 (1997)

    Article  ADS  Google Scholar 

  3. Bristow, P., Kerber, F., Rosa, M.R., Pirard, J.F., Siebenmorgen, R., Käufl, H.-U.: Model based wavelength calibration for CRIRES. Proc. SPIE. 6270, 62701 T, (2006). doi: 10.1117/12.670785

  4. Bristow, P., Kerber, F., Rosa, M.R.: Advanced calibration techniques for astronomical spectrographs. Messenger 131, 2–6 (2008)

    ADS  Google Scholar 

  5. Buchdahl, H.A.: Optical aberration coefficients. Oxford University Press, London (1954)

    MATH  Google Scholar 

  6. Buchdahl, H.A.: Optical aberration coefficients. I. The coefficient of tertiary spherical aberration. J. Opt. Soc. Am. 46(11) (1956)

  7. Buchdahl, H.A.: Optical aberration coefficients. II. The tertiary intrinsic coefficients. J. Opt. Soc. Am. 48(8), 563–64 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  8. Cruickshank, F.D., Hills, G.A.: Use of optical aberration coefficients in optical design. J. Opt. Soc. Am. 50(4), 379–384 (1960)

    Article  ADS  Google Scholar 

  9. Kerber, F., Bristow, P., Rosa, M.R.: STIS calibration enhancement (STIS-CE): Dispersion solutions based on a physical instrument model. The 2005 HST calibration workshop, Space Telescope Science Institute, (2005)

  10. Mitchell, C.J.: Generalized ray-tracing for diffraction gratings of arbitrary form. J. Optic (Paris) 12(5), 301–308 (1981)

    Article  ADS  Google Scholar 

  11. Pepe, F., Mayor, M., Delabre, B., Kohler, D., Lacroix, D., Queloz, D., Udry, S., Benz, W., Bertaux, J.-L., Sivan, J.-P.: HARPS: a new high-resolution spectrograph for the search of extrasolar planets. Proc. SPIE, Optical and IR Telescope Instrumentation and Detectors. 4008 582 (2000). doi:10.1117/12.395516

  12. Raskin, G., Winckel, H. V., Hensberge, H., et al.: HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys. 526 A69 (2011)

  13. Redman, S.L., Nave, G., Sansonetti, C.J.: The spectrum of thorium from 250 nm to 5500 nm: Ritz wavelengths and optimized energy levels. Astrophys. J. Suppl. Ser. 211, 4 (2014). doi:10.1088/0067-0049/211/1/4

    Article  ADS  Google Scholar 

  14. Rosa, M.R., Alexov, A., Bristow, P.D., Kerber, F.: FOS post-operational archive and STIS calibration enhancement. 2002 HST calibration workshop, Space Telescope Science Institute. (2002)

  15. Spano, P., Delabre, B., Dekker, H., Avila, G.: New design approaches for a very-high resolution spectrograph for the combined focus of the VLT. Proc. of SPIE. 7014 70140 M, (2008) doi: 10.1117/12.789283

  16. Wilken, T., Curto, G.L., Probst, R.A., et al.: A spectrograph for exoplanet observations calibrated at centimetre-per-second level. Nature 485, 611–4 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anantha Chanumolu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanumolu, A., Jones, D. & Thirupathi, S. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study. Exp Astron 39, 423–443 (2015). https://doi.org/10.1007/s10686-015-9457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9457-y

Keywords

Navigation