Skip to main content
Log in

Fermi gamma-ray burst monitor detector performance at very high counting rates

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Gamma-ray Burst Monitor consists of 12 sodium iodide and 2 bismuth germanate scintillation detectors designed to enhance the scientific returns from Fermi in the study of γ-ray bursts. It has a fixed non-paralyzing dead time of 2.604 μs for each detected event except for those in the overflow channel of the 12 bit analog to digital converter of each detector, which have a longer dead time of 10.42 μs. At very high counting rates the pulse pile-up effect in the detectors leads to spectral distortions and also to additional event losses. These effects are relevant for the spectral analysis of high-flux astrophysical events such as gamma-ray bursts, soft gamma repeaters and solar flares, as well as terrestrial gamma-ray flashes. In this paper we present the results of post-launch tests using engineering detectors and equipment on the ground, along with detailed simulations of these effects at very high counting rates. The simulations enable us to assess the qualitative and quantitative changes in spectral shapes and event losses at different count rates. The observed spectra at various count rates using high intensity radioactive sources such as Cs137 and Co60 agree well with the simulated spectra. We also re-test the analytical model developed previously to correct for the pulse pile-up effects in GBM detectors. We also study the expected spectral distortions of specific spectral models commonly used in GRB analysis, including the Band model and power-law models with and without a high-energy cutoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ackermann, M., et al.: ApJ 745, 144 (2012)

    Article  ADS  Google Scholar 

  2. van der Horst, A.J., et al.: ApJ 711, L1 (2010)

    Article  ADS  Google Scholar 

  3. Briggs, M.S., et al.: JGRA 115, 7323 (2010)

    Article  ADS  Google Scholar 

  4. Burgess, J.M., et al.: ApJ 784, 17 (2014)

    Article  ADS  Google Scholar 

  5. Preece, R.D., et al.: Sci. 343, 51 (2014)

    Article  ADS  Google Scholar 

  6. Guiriec, S., et al.: ApJ 727, 33 (2011)

    Article  ADS  Google Scholar 

  7. Burgess, J.M., et al.: ApJ 784, L43 (2014)

    Article  ADS  Google Scholar 

  8. Guiriec, S., et al.: ApJ 725, 225 (2010)

    Article  ADS  Google Scholar 

  9. Meegan, C.A., et al.: ApJ 702, 791 (2009)

    Article  ADS  Google Scholar 

  10. Chaplin, V., Bhat, N., Briggs, M., Connaughton, V.: Nucl. Inst. Methods A 717, 21 (2013)

    Article  ADS  Google Scholar 

  11. Leo, W.R.: Techniques for Nuclear and Particle Physics, pp 160–61. Springer (1994)

  12. Theis, L.M., Persyn, S.C., Johnson, M.A., Smith, K.D., Walls, B.J., Epperly, M.E.: Paper #1217 (2006)

  13. Leo, W.R.: Techniques for Nuclear and Particle Physics, pp 122–27. Springer (1994)

  14. Gedcke, D.: Ortec Application Note AN63 (2007). http://www.ortec-online.com

  15. Lucke, R.: Rev. Sci. Instrum. 47, 766 (1976)

    Article  ADS  Google Scholar 

  16. Meeks, C., Siegel, P.B.: Am. J. Phys. 76, 589 (2008)

    Article  ADS  Google Scholar 

  17. Cano-Ott, J.L., et al.: Nucl. Inst. Methods A 430, 488 (1999)

    Article  ADS  Google Scholar 

  18. Lindstrom, R.M., Fleming, R.F.: Radioact. Radiochem. 6, 20 (1995)

    Google Scholar 

  19. Bolic, M., Drndarević, V.: Nucl. Inst. Methods A 482, 761 (2002)

    Article  ADS  Google Scholar 

  20. Esmaeili-sani, V., Moussavi-zarandi, A., Akbar-ashrafi, N., Boghrati, B.: Nucl. Inst. Methods A 665, 11 (2011)

    Article  ADS  Google Scholar 

  21. Knoll, G.F.: Radiation Detection and Measurement, 3rd ed. Wiley, New York (2000)

    Google Scholar 

  22. Rainwater, L.J., Wu, C.S.: Nucleonics 1, 60 (1947)

    Google Scholar 

  23. Müller, J.W.: Nucl. Instr. Methods A 301, 543 (1991)

    Article  ADS  Google Scholar 

  24. Band, D., et al.: ApJ 413, 281 (1993)

    Article  ADS  Google Scholar 

  25. Dwyer, J.R., Smith, D.M., Cummer, S.A.: S. A., Sp. Sci. Rev. 173, 133 (2012)

    Article  ADS  Google Scholar 

  26. Ackermann, M., et al.: Science 343, 42 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Bhat.

Appendix: A parameterization of spectral models

Appendix: A parameterization of spectral models

1.1 Power law model

  1. 1.

    A = amplitude in photons s−1 cm−2 keV−1

  2. 2.

    index λ,

  3. 3.

    E = photon energy in keV

    $$ f = A(E/100)^{\uplambda} $$

1.2 Exponentially cut-off power-law model

  1. 1.

    A = amplitude in photons s−1 cm−2 keV−1

  2. 2.

    E p e a k in keV

  3. 3.

    index λ,

  4. 4.

    E = photon energy in keV

    $$ f = A \text{exp}\,[-E(2+\uplambda)/E_{peak}] (E/100)^{\uplambda} $$

1.3 Band’s gamma-ray Burst spectral model [24]

  1. 1.

    A = amplitude in photons s−1 cm−2 keV−1

  2. 2.

    E p e a k in keV

  3. 3.

    low-energy index α,

  4. 4.

    high-energy index β.

  5. 5.

    E = photon energy in keV

$$f = A(E/100)^{\alpha} \text{exp}\,(-E(2+\alpha)/E_{peak})$$
$${}\text{if}\ E < (\alpha - \beta)E_{peak}/(2+\alpha),$$
$${}f = A\{(\alpha - \beta)E_{peak}/[100(2+\alpha)]\}^{(\alpha - \beta)} \text{exp}\,(\beta - \alpha)(E/100)^{\beta}$$
$$ \text{if}\ E \geq (\alpha - \beta)E_{peak}/(2+\alpha)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, P.N., Fishman, G.J., Briggs, M.S. et al. Fermi gamma-ray burst monitor detector performance at very high counting rates. Exp Astron 38, 331–357 (2014). https://doi.org/10.1007/s10686-014-9424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9424-z

Keywords

Navigation