Model-based riverscape genetics: disentangling the roles of local and connectivity factors in shaping spatial genetic patterns of two Amazonian turtles with different dispersal abilities

  • Jessica dos Anjos OliveiraEmail author
  • Izeni Pires Farias
  • Gabriel C. Costa
  • Fernanda P. Werneck
Original Paper


Genetic patterns are shaped by the interaction of different factors such as distance, barriers, landscape resistance and local environment. The relative importance of these processes may vary for species with different ecological traits. Here we compared two related Amazonian riverine turtle species (Podocnemis erythrocephala and Podocnemis sextuberculata) with distinct dispersal abilities to assess how differently local and connectivity variables influence their genetic patterns. We used a total of 609 genetic samples to estimate mitochondrial (mtDNA) genetic diversity and differentiation for each locality. We applied model selection on models associating genetic diversity to local variables representing hypotheses of climate and primary productivity, water level variation, hunting pressure and downstream increase in genetic diversity. We modeled the relationship of genetic differentiation with connectivity variables representing hypotheses of isolation by distance (IBD), isolation by resistance (IBR) and isolation by barrier (IBB). Model selection for genetic diversity was only important (excluded the null model) for the high-dispersal species (P. sextuberculata), with best models including hypotheses of productivity and hunting pressure. Genetic diversity was higher in more productive sites and in sites with higher concentration of villages (opposed to expected). Although a variable importance testing showed low importance for connectivity models, IBB (Amazon River) and IBR (resistance by current and past climatic suitability and river color) models explained more genetic differentiation turnover than IBD (riverway distance). Models explained a higher percentage of genetic differentiation for the low-dispersal species (P. erythrocephala), with Amazon River as main predictor. We show that, although local variables are often overlooked in riverscape genetics studies, they can influence intrapopulacional genetic diversity of aquatic species, even those with high dispersal ability. By applying a resistance-model framework and by using riverscape genetics factors relevant in basin-wide context, we provide a novel approach to investigate genetic patterns of other aquatic vertebrates in fluvial systems.


Amazon basin Genetic differentiation Genetic diversity Landscape genetics Podocnemis Resistance model 



This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Master’s fellowship to J.A.O., 475559/2013-4 and 305535/2017-0 to F.P.W., 302297/2015-4 to G.C.C., SISBIOTA 563348/2010-0 to I.P.F.); Fundação de Amparo à Pesquisa do Amazonas-FAPEAM (062.00665/2015 and 062.01110/2017 to F.P.W.); Partnerships for Enhanced Engagement in Research from the U.S. National Academy of Sciences and U.S. Agency of International Development-PEER NAS/USAID (AID-OAA-A-11-00012 to F.P.W.); and by the L’Oréal-UNESCO For Women In Science Program to F.P.W. We thank M. N. S. Viana for contributing with additional biological samples used in this work. We also thank P. C. A. Machado, R. C. Vogt, J. Erickson and F. Fernandes for collecting samples. The authors declare no conflicts of interest.

Supplementary material

10682_2019_9973_MOESM1_ESM.doc (8.3 mb)
Supplementary material 1 (DOC 8521 kb)


  1. Alcântara AS, Félix-Silva D, Pezzuti JCB (2013) Effects of the hydrological cycle and human settlements on the population status of Podocnemis unifilis (Testudines: Podocnemididae) in the Xingu River, Brazil. Chelonian Conserv Biol 12:134–142CrossRefGoogle Scholar
  2. Alho CJR, Pádua LFM (1982) Sincronia entre o regime de vazante do rio e o comportamento de nidificaçào da tartaruga da Amazônia Podocnemis expansa (Testudines: Pelomedusidae). Acta Amazon 12(2):323–326CrossRefGoogle Scholar
  3. Allendorf FW, England PR, Luikart G et al (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337CrossRefPubMedGoogle Scholar
  4. Balkenhol N, Cushman SA, Storfer A et al (2016) Introduction to landscape genetics—concepts, methods, applications. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 1–8Google Scholar
  5. Batistella AM, Vogt RC (2008) Nesting ecology of Podocnemis erythrocephala (Testudines, Podocnemididae) of the Rio Negro, Amazonas, Brazil. Chelonian Conserv Biol 7:12–20CrossRefGoogle Scholar
  6. Beheregaray LB, Cooke G, Chao N et al (2015) Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front Genet 5:1–19CrossRefGoogle Scholar
  7. Bermudez-Romero AL, Castelblanco-Martínez N, Bernhard R et al (2015) Nesting habitat of the ‘cupiso’ Podocnemis sextuberculata (Testudines: Podocnemididae) in Erepecu Lake (Pará-Brazil). Acta Biol Colomb 20:183–191Google Scholar
  8. Bernardes VCD, Ferrara CR, Vogt RC et al (2014) Abundance and population structure of Podocnemis erythrocephala (Testudines, Podocnemididae) in the Unini River, Amazonas. Chelonian Conserv Biol 13:89–95CrossRefGoogle Scholar
  9. Bernhard R (2010) Dinâmica populacional de Podocnemis erythrocephala, no rio Ayuanã, Amazonas, Brasil. PhD Thesis, INPAGoogle Scholar
  10. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  11. Caldera EJ, Bolnick DI (2008) Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evol Ecol Res 10:575–598Google Scholar
  12. Cantanhede A, Da Silva V, Ferreira M et al (2005) Phylogeography and population genetics of the endangered Amazonian manatee, Trichechus inunguis Natterer, 1883 (Mammalia, Sirenia). Mol Ecol 14:401–413CrossRefPubMedGoogle Scholar
  13. Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789CrossRefPubMedGoogle Scholar
  14. Carnaval AC, Waltari E, Rodrigues MT et al (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc Lond B Biol Sci 281:20141461CrossRefGoogle Scholar
  15. Conway-Gómez K (2007) Effects of human settlements on abundance of Podocnemis unifilis and P. expansa turtles in northeastern Bolivia. Chelonian Conserv Biol 6:199–205CrossRefGoogle Scholar
  16. Cook BD, Kennard MJ, Real K et al (2011) Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history. Freshw Biol 56:812–827CrossRefGoogle Scholar
  17. Corander J, Marttinen P, Sirén J et al (2006) BAPS: Bayesian analysis of population structure, Manual v. 4.1. Department of Mathematics, University of HelsinkiGoogle Scholar
  18. Davis CD, Epps CW, Flitcroft RL, Banks MA (2018) Refining and defining riverscape genetics: how rivers influence population genetic structure. WIREs Water 5:e1269CrossRefGoogle Scholar
  19. De Thoisy B, Hrbek T, Farias IP et al (2006) Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biol Conserv 133:474–482CrossRefGoogle Scholar
  20. Dileo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Lands Ecol Rep 1:115–126CrossRefGoogle Scholar
  21. Domisch S, Amatulli G, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci Data 2:1–13CrossRefGoogle Scholar
  22. Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433CrossRefPubMedGoogle Scholar
  23. Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040CrossRefPubMedGoogle Scholar
  24. Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  25. Escalona T, Engstrom TN, Hernandez O et al (2009) Population genetics of the endangered South American freshwater turtle, Podocnemis unifilis, inferred from microsatellite DNA data. Conserv Genet 10:1683–1696CrossRefGoogle Scholar
  26. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  27. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  28. Fachin-Terán A, Vogt RC (2014) Alimentación de Podocnemis Sextuberculata (Testudines: Podocnemididae) en la Reserva Mamirauá, Amazonas, Brasil. Revista Colombiana de Ciencia Animal 6:286–309Google Scholar
  29. Fachín-Terán A, Vogt RC, Thorbjarnarson JB (2006) Seasonal movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. Chelonian Conserv Biol 5:18–24CrossRefGoogle Scholar
  30. Fagundes CK, Vogt RC, De Marco JP (2015) Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Divers Distrib 22:123–135CrossRefGoogle Scholar
  31. Fantin C, Farias I, Monjeló L et al (2010) Polyandry in the red-headed river turtle Podocnemis erythrocephala (Testudines, Podocnemididae) in the Brazilian Amazon. Genet Mol Res 9:435–440CrossRefPubMedGoogle Scholar
  32. Fantin C, Pereira DIM, Ferreira JF et al (2015) Evidence of multiple paternal contribution in Podocnemis sextuberculata (Testudines: Podocnemididae) detected by microsatellite markers. Phyllomedusa 14:89–97CrossRefGoogle Scholar
  33. Ferrara CR, Fagundes CK, Morcatty TQ et al (2017) Quelônios Amazônicos: Guia de identificação e distribuição. Editora INPA, ManausGoogle Scholar
  34. Ferrier S, Manion G, Elith J et al (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264CrossRefGoogle Scholar
  35. Fitzpatrick MC, Keller SR (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 18:1–16CrossRefPubMedGoogle Scholar
  36. Fitzpatrick MC, Sanders NJ, Normand S et al (2013) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc Lond B Biol Sci 280:20131201CrossRefGoogle Scholar
  37. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  38. Gomez-Uchida D, Knight TW, Ruzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Mol Ecol 18:4854–4869CrossRefPubMedGoogle Scholar
  39. Goodall-Copestake W, Tarling G, Murphy E (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109:50–56CrossRefPubMedPubMedCentralGoogle Scholar
  40. Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. PNAS 103(3):632–636CrossRefPubMedGoogle Scholar
  41. Gravena W, Silva VM, Silva MN et al (2015) Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biol J Linn Soc 114:764–777CrossRefGoogle Scholar
  42. Hand BK, Muhlfeld CC, Wade AA et al (2015) Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics. Mol Ecol 25:689–705CrossRefGoogle Scholar
  43. Hayes FE, JaN S (2004) The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. J Biogeogr 31:1809–1818CrossRefGoogle Scholar
  44. Hijmans R, Cameron S, Parra J et al (2005) WorldClim, version 1.3. University of California, BerkeleyGoogle Scholar
  45. Hijmans RJ, Phillips S, Leathwick J et al (2015) dismo: Species distribution modeling. R package version 1.0-12Google Scholar
  46. Hrbek T, Farias IP, Crossa M et al (2005) Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Anim Conserv 8:297–308CrossRefGoogle Scholar
  47. Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience 59(7):573–583CrossRefGoogle Scholar
  48. Jenkins DG, Carey M, Czerniewska J et al (2010) A meta-analysis of isolation by distance: Relic or reference standard for landscape genetics? Ecography 33:315–320Google Scholar
  49. Junk WJ, Piedade MTF, Schöngart J et al (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640CrossRefGoogle Scholar
  50. Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729CrossRefPubMedGoogle Scholar
  51. Kovach RP, Muhlfeld CC, Wade AA et al (2015) Genetic diversity is related to climatic variation and vulnerability in threatened bull trout. Glob Change Biol 21:2510–2524CrossRefGoogle Scholar
  52. Kuo C, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conserv Genet 5:425–437CrossRefGoogle Scholar
  53. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  54. Liggins L, Treml EA, Possingham HP et al (2016) Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes. J Biogeogr 43:256–267CrossRefGoogle Scholar
  55. Malhi Y, Baker TR, Phillips OL et al (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591CrossRefGoogle Scholar
  56. Manel S, Schwartz MK, Luikart G et al (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  57. Manion G, Lisk M, Ferrier S et al (2016) gdm: Functions for Generalized Dissimilarity Modeling. R package.Google Scholar
  58. Marsack K, Swanson BJ (2009) A genetic analysis of the impact of generation time and road-based habitat fragmentation on eastern box turtles (Terrapene c. carolina). Copeia 2009:647–652CrossRefGoogle Scholar
  59. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091CrossRefPubMedGoogle Scholar
  60. Mazerolle MJ, Mazerolle MMJ (2016) Package ‘AICcmodavg’Google Scholar
  61. Mcrae BH (2006) Isolation by resistance. Evolution 60:1551–1561CrossRefPubMedGoogle Scholar
  62. Mitchell MW, Locatelli S, Clee PRS et al (2015) Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol Biol 15:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mittermeier RA, Vogt RC, Bernhard R et al (2015) Podocnemis erythrocephala (Spix 1824)—Red-headed Amazon River Turtle, Irapuca. In: Rhodin A, Pritchard P, Van Dijk P, et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Monographs, vol 5, pp 087.081-010Google Scholar
  64. Moore J, Miller H, Daugherty C et al (2008) Fine-scale genetic structure of a long-lived reptile reflects recent habitat modification. Mol Ecol 17:4630–4641CrossRefPubMedGoogle Scholar
  65. Murphy M, Evans JS (2011) Genetic patterns as a function of landscape process: applications of neutral genetic markers for predictive modeling in landscape ecology. In: Drew CA, Wiersma YF, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology. Springer, New York, pp 161–188CrossRefGoogle Scholar
  66. Murphy M, Dezzani R, Pilliod D et al (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649CrossRefPubMedGoogle Scholar
  67. NASA (2016) Moderate Resolution Imaging Spectroradiometer (MODIS). National Aeronautics and Space Administration. Available from Accessed Dec 2016.
  68. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  69. Ortego J, Gugger PF, Sork VL (2015) Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. J Biogeogr 42:328–338CrossRefGoogle Scholar
  70. Ouellet-Cauchon G, Mingelbier M, Lecomte F et al (2014) Landscape variability explains spatial pattern of population structure of northern pike (Esox lucius) in a large fluvial system. Ecol Evol 4:3723–3735CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ozerov MY, Veselov AE, Lumme J et al (2012) “Riverscape” genetics: river characteristics influence the genetic structure and diversity of anadromous and freshwater Atlantic salmon (Salmo salar) populations in northwest Russia. Can J Fish Aquat Sci 69:1947–1958CrossRefGoogle Scholar
  72. Pantoja-Lima J, Juárez CBP, Teixeira A et al (2009) Seleção de locais de desova e sobrevivência de ninhos de quelônios Podocnemis no baixo Rio Purus, Amazonas, Brasil. Revista Colombiana de Ciencia Animal 1:37–59CrossRefGoogle Scholar
  73. Pantoja-Lima J, Aride PH, De Oliveira AT et al (2014) Chain of commercialization of Podocnemis spp. turtles (Testudines: Podocnemididae) in the Purus River, Amazon basin, Brazil: current status and perspectives. J Ethnobiol Ethnomed 10:8CrossRefPubMedPubMedCentralGoogle Scholar
  74. Paz-Vinas I, Blanchet S (2015) Dendritic connectivity shapes spatial patterns of genetic diversity: a simulation-based study. J Evol Biol 28:986–994CrossRefPubMedGoogle Scholar
  75. Paz-Vinas I, Loot G, Stevens V et al (2015) Evolutionary processes driving spatial patterns of intra-specific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604CrossRefPubMedGoogle Scholar
  76. Pearse DE, Arndt AD, Valenzuela N et al (2006) Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon River turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol Ecol 15:985–1006CrossRefPubMedGoogle Scholar
  77. Peres CA (2000) Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv Biol 14:240–253CrossRefGoogle Scholar
  78. Pezzuti JC, Lima JP, Da Silva DF et al (2010) Uses and taboos of turtles and tortoises along Rio Negro, Amazon Basin. J Ethnobiol 30:153–168CrossRefGoogle Scholar
  79. Reid BN, Mladenoff DJ, Peery MZ (2017) Genetic effects of landscape, habitat preference, and demography on three co-occurring turtle species. Mol Ecol 26:781–798CrossRefPubMedGoogle Scholar
  80. Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451CrossRefPubMedGoogle Scholar
  81. Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963CrossRefPubMedGoogle Scholar
  82. Santos RC, Viana MNS, LaS M et al (2016) Testing the effects of barriers on the genetic connectivity in Podocnemis erythrocephala (Red-headed Amazon River Turtle): implications for management and conservation. Chelonian Conserv Biol 15:12–22CrossRefGoogle Scholar
  83. Schneider L, Ferrara CR, Vogt RC, Burger J (2011) History of turtle exploitation and management techniques to conserve turtles in the Rio Negro Basin of the Brazilian Amazon. Chelonian Conserv Biol 10(1):149–157CrossRefGoogle Scholar
  84. Selkoe KA, Scribner KT, Galindo HM (2016) Waterscape genetics—applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 220–246Google Scholar
  85. Silva-Junior UL (2015) Análise dos extremos hidrológicos da bacia Amazônica e modelagem integrada (SNAP/Western Amazon-February 2015)Google Scholar
  86. Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Springer, DordrechtCrossRefGoogle Scholar
  87. Smith NJ (1979) Aquatic turtles of Amazonia: an endangered resource. Biol Conserv 16:165–176CrossRefGoogle Scholar
  88. Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495CrossRefPubMedGoogle Scholar
  89. Spear SF, Cushman SA, Mcrae BH (2016) Resistance surface modeling in landscape genetics. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 129–148Google Scholar
  90. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264CrossRefPubMedGoogle Scholar
  91. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  92. Steele C, Baumsteiger J, Storfer A (2009) Influence of life-history variation on the genetic structure of two sympatric salamander taxa. Mol Ecol 18:1629–1639CrossRefPubMedGoogle Scholar
  93. Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: Where are we now? Mol Ecol 19:3496–3514CrossRefPubMedGoogle Scholar
  94. Thomaz AT, Malabarba LR, Bonatto SL et al (2015) Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J Biogeogr 42:2389–2401CrossRefGoogle Scholar
  95. Turtle Conservation Fund (2002) A global action plan for conservation of tortoises and freshwater turtles: strategy and funding prospectus 2002–2007. Conservation International and Chelonian Research Foundation, WashingtonGoogle Scholar
  96. Van Etten J (2012) gdistance: Distances and routes on geographical grids. R package version 1.1–4Google Scholar
  97. Vargas-Ramírez M, Stuckas H, Castaño-Mora OV et al (2012) Extremely low genetic diversity and weak population differentiation in the endangered Colombian river turtle Podocnemis lewyana (Testudines: Podocnemididae). Conserv Genet 13:65–77CrossRefGoogle Scholar
  98. Venticinque E, Forsberg B, Barthem R et al (2016) An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth Syst Sci Data 8:651CrossRefGoogle Scholar
  99. Viana MNS, Oliveira JA, Agostini MA et al (2017) Population genetic structure of the threatened Amazon River turtle Podocnemis sextuberculata (Testudines, Podocnemididae). Chelonian Conserv Biol 16(2):128–138CrossRefGoogle Scholar
  100. Vogt RC (2008) Amazon turtles. INPA, ManausGoogle Scholar
  101. Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261CrossRefGoogle Scholar
  102. Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 77–98Google Scholar
  103. Wang IJ (2010) Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol Ecol 19:2605–2608CrossRefPubMedGoogle Scholar
  104. Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662CrossRefPubMedGoogle Scholar
  105. Wang Y-H, Yang K-C, Bridgman CL, Lin L-K (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol 23:989–1000Google Scholar
  106. Wang IJ, Savage WK, Bradley Shaffer H (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374CrossRefPubMedGoogle Scholar
  107. Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182CrossRefPubMedGoogle Scholar
  108. Wofford JE, Gresswell RE, Banks MA (2005) Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol Appl 15:628–637CrossRefGoogle Scholar
  109. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedPubMedCentralGoogle Scholar
  110. Wright S (1943) Isolation by distance. Genetics 28:114PubMedPubMedCentralGoogle Scholar
  111. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 496–506Google Scholar
  112. Zeller KA, Mcgarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Laboratório de Evolução e Genética Animal, Departamento de GenéticaUniversidade Federal do AmazonasManausBrazil
  3. 3.Department of Biology and Environmental SciencesAuburn University at MontgomeryMontgomeryUSA
  4. 4.Programa de Coleções Científicas Biológicas, Coordenação de BiodiversidadeInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations