Advertisement

Euphytica

, 215:165 | Cite as

Chromosomal location and molecular characterization of three grain hardness genes in Agropyron cristatum

  • Adoración Cabrera
  • Laura Castellano
  • Rocío Recio
  • Juan B. AlvarezEmail author
Article
  • 19 Downloads

Abstract

Grain hardness is an important characteristic of wheat quality. This trait is mainly related to the variation in, and the presence of, puroindolines (Pina and Pinb genes), and, to a lesser extent, the grain softness protein (Gsp-1) gene. The current study evaluated the allelic variability levels of these three genes in 12 diploid lines from Agropyron cristatum, a species from the tertiary wheat genepool. Along with their chromosomal locations, the molecular characterizations of the main allelic variants were found and their phylogenetic relationships with wheat genomes were determined. The hardness (Ha) locus, which includes the Pina, Pinb and Gsp-1 genes, was physically mapped on the short arm of chromosome 5P of A. cristatum. This conservation of synteny in homeologous group 5 suggests that the genes isolated in the present study are orthologues of the wheat Pina, Pinb and Gsp-1 genes. The identified polymorphisms resulted in three alleles, two for the Pinb and Gsp-1 genes, but only one allele for the Pina gene. Diverse changes were detected in the deduced mature proteins of these alleles, which could influence their hardness characteristics. The Pina, Pinb and Gsp-1 genes from diploid A. cristatum might be good sources of genetic variability that could extend the range of wheat grain textures in parallel with the introgression of other useful agronomic traits.

Keywords

Crested wheatgrass Ha locus Puroindolines Wheat 

Notes

Acknowledgements

This research was supported by Grants AGL2014-52445-R and RTI2018-093367-B-I00 from the Spanish State Research Agency (Spanish Ministry of Science, Innovation and Universities), co-financed with the European Regional Development Fund (FEDER) from the European Union. We thank to the National Small Grain Collection (Aberdeen, Idaho, USA) for supplying the A. cristatum accessions.

Author’s contribution

JBA conceived and designed the study; JBA, LC and RC performed the experiments; JBA and AC analyzed the data and wrote the paper. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2496_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1185 kb)

References

  1. Alvarez JB, Guzmán C (2018) Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor Appl Genet 131:225–251CrossRefGoogle Scholar
  2. Ayala M, Guzmán C, Alvarez JB, Peña RJ (2013) Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica 190:53–63CrossRefGoogle Scholar
  3. Bayat H, Nemati H, Tehranifar A, Gazanchian A (2016) Screening different crested wheatgrass (Agropyron cristatum (L.) Gaertner.) accessions for drought stress tolerance. Arch Agron Soil Sci 62:769–780CrossRefGoogle Scholar
  4. Bettge AD, Morris CF (2000) Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem 77:241–247CrossRefGoogle Scholar
  5. Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219CrossRefGoogle Scholar
  6. Blochet J-E, Chevalier C, Forest E, Pebay-Peyroula E, Gautier M-F, Joudrier P, Pézolet M, Marion D (1993) Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett 329:336–340CrossRefGoogle Scholar
  7. Capparelli R, Amoroso MG, Palumbo D, Iannaccone M, Faleri C, Cresti M (2005) Two plant puroindolines colocalize in wheat seed and in vitro synergistically fight against pathogens. Plant Mol Biol 58:857–867CrossRefGoogle Scholar
  8. Chen Q, Jahier J, Cauderon Y (1989) Production and cytogenetical studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Gaertn. C R Acad Sci Paris Ser 3 308:425–430Google Scholar
  9. Chen Q, Jahier J, Cauderon Y (1992) Production and cytogenetic analysis of BC1, BC2, and BC3 progenies of an intergeneric hybrid between Triticum aestivum (L.) Thell. and tetraploid Agropyron cristatum (L.) Gaertn. Theor Appl Genet 84:698–703CrossRefGoogle Scholar
  10. Chen Q, Lu YL, Jahier J, Bernard M (1994) Identification of wheat-Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor Appl Genet 89:70–75CrossRefGoogle Scholar
  11. Chen MJ, Wilkinson M, Tosi P, He GY, Shewry P (2005) Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet 111:1159–1166CrossRefGoogle Scholar
  12. Chen SY, Ma X, Zhang XQ, Huang LK, Zhou JN (2013) Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: agropyron) based on gliadin analysis. Genet Mol Res 12:5704–5713CrossRefGoogle Scholar
  13. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747CrossRefGoogle Scholar
  14. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688CrossRefGoogle Scholar
  15. Copete A, Cabrera A (2017) Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica 213:189CrossRefGoogle Scholar
  16. Copete A, Moreno R, Cabrera A (2018) Characterization of a world collection of Agropyron cristatum accessions. Genet Resour Crop Evol 65:1455–1469CrossRefGoogle Scholar
  17. Cuesta S, Guzman C, Alvarez JB (2013) Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus. J Exp Bot 64:5133–5143CrossRefGoogle Scholar
  18. Cuesta S, Alvarez JB, Guzmán C (2015) Characterization and sequence diversity of the Gsp-1 gene in diploid species of the Aegilops genus. J Cereal Sci 63:1–7CrossRefGoogle Scholar
  19. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement: 16th stadler genetics symposium. Springer, Boston, pp 209–279CrossRefGoogle Scholar
  20. Douliez JP, Michon T, Elmorjani K, Marion D (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32:1–20CrossRefGoogle Scholar
  21. Feiz L, Beecher BS, Martin JM, Giroux MJ (2009) In planta mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics 183:853–860CrossRefGoogle Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  23. Gautier M-F, Aleman M-E, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57CrossRefGoogle Scholar
  24. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  25. Gul ZD, Yolcu H, Tan M, Serin Y, Gul I (2013) Yield, quality, and other characteristics of selected lines of crested wheatgrass. J Plant Regist 7:373–377CrossRefGoogle Scholar
  26. Guzmán C, Alvarez JB (2014) Molecular characterization of two novel alleles of Hordoindoline genes in Hordeum chilense Roem. et Schult. Genet Resour Crop Evol 61:307–312CrossRefGoogle Scholar
  27. Jiang B, Liu T, Li H, Han H, Li L, Zhang J, Yang X, Zhou S, Li X, Liu W (2018) Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front Plant Sci 9:817CrossRefGoogle Scholar
  28. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947CrossRefGoogle Scholar
  29. Jubault M, Tanguy A-M, Abélard P, Coriton O, Dusautoir J-C, Jahier J (2006) Attempts to induce homoeologous pairing between wheat and Agropyron cristatum genomes. Genome 49:190–193CrossRefGoogle Scholar
  30. Kim KH, Feiz L, Dyer AT, Grey W, Hogg AC, Martin JM, Giroux MJ (2012) Increased resistance to Penicillium seed rot in transgenic wheat over-expressing puroindolines. J Phytopathol 160:243–247CrossRefGoogle Scholar
  31. Li W, Huang L, Gill BS (2008) Recurrent deletions of puroindoline genes at the grain Hardness locus in four independent lineages of polyploid wheat. Plant Physiol 146:200–212CrossRefGoogle Scholar
  32. Li Q, Lu Y, Pan C, Zhang J, Liu W, Yang X, Li X, Xi Y, Li L (2016) Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci 56:2390–2400CrossRefGoogle Scholar
  33. Li H, Jiang B, Wang J, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2017) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:109–121CrossRefGoogle Scholar
  34. Lillemo M, Chen F, Xia X, William M, Peña RJ, Trethowan R, He Z (2006) Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci 44:86–92CrossRefGoogle Scholar
  35. Limin AE, Fowler DB (1990) An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33:581–584CrossRefGoogle Scholar
  36. Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510CrossRefGoogle Scholar
  37. Martín A, Rubiales D, Cabrera A (1998) Meiotic pairing in a trigeneric hybrid Triticum tauschii-Agropyron cristatum-Hordeum chilense. Hereditas 129:113–118CrossRefGoogle Scholar
  38. Martín A, Cabrera A, Esteban E, Hernández P, Ramírez MC, Rubiales D (1999) A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum). Genome 42:519–524CrossRefGoogle Scholar
  39. Massa AN, Morris CF, Gill BS (2004) Sequence diversity of Puroindoline-a, Puroindoline-b, and the grain softness protein genes in Aegilops tauschii Coss. Crop Sci 44:1808–1816CrossRefGoogle Scholar
  40. McGuire PE, Dvôrák J (1981) High salt-tolerance potential in wheatgrasses. Crop Sci 21:702–705CrossRefGoogle Scholar
  41. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739CrossRefGoogle Scholar
  42. Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647CrossRefGoogle Scholar
  43. Morris CF, Rose SP (1996) Wheat. In: Henry RJ, Kettlewell PS (eds) Cereal grain quality. Springer, Dordrecht, pp 3–54CrossRefGoogle Scholar
  44. Morris CF, Simeone MC, King GE, Lafiandra D (2011) Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum. Crop Sci 51:114–122CrossRefGoogle Scholar
  45. Morris CF, Geng HW, Beecher BS, Ma DY (2013) A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.). Plant Mol Biol 83:507–521CrossRefGoogle Scholar
  46. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426Google Scholar
  47. Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95CrossRefGoogle Scholar
  48. Ortega R, Alvarez JB, Guzmán C (2014) Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genet Resour Crop Evol 61:369–382CrossRefGoogle Scholar
  49. Pauly A, Pareyt B, Fierens E, Delcour JA (2013) Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: i. Current view on the role of puroindolines and polar lipids. Compr Rev Food Sci Food Saf 12:413–426CrossRefGoogle Scholar
  50. Phillips RL, Palombo EA, Panozzo JF, Bhave M (2011) Puroindolines, Pin alleles, hordoindolines and grain softness proteins are sources of bactericidal and fungicidal peptides. J Cereal Sci 53:112–117CrossRefGoogle Scholar
  51. Pomeranz Y, Williams PC (1990) Wheat hardness: its genetic, structural, and biochemical background, measurement, and significance. In: Pomeranz Y (ed) Advances in cereal science and technology, X. Am. Assoc. Cereal Chemistry. St. Paul, Minnesota, pp 471–544Google Scholar
  52. Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S (2018) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121:603–616CrossRefGoogle Scholar
  53. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277CrossRefGoogle Scholar
  54. Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J (2018) The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet 131:2213–2227CrossRefGoogle Scholar
  55. Said M, Copete A, Gaál E, Molnár I, Cabrera A, Doležel J, Vrána J (2019) Uncovering macrosyntenic relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor Appl Genet.  https://doi.org/10.1007/s00122-019-03394-1 CrossRefPubMedGoogle Scholar
  56. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51CrossRefGoogle Scholar
  57. Soliman MH, Rubiales D, Cabrera A (2001) A fertile amphiploid between durum wheat (Triticum turgidum) and the × Agroticum amphiploid (Agropyron cristatum × T. tauschii). Hereditas 135:183–186CrossRefGoogle Scholar
  58. Soliman MH, Cabrera A, Sillero JC, Rubiales D (2007) Genomic constitution and expression of disease resistance in Agropyron cristatum × durum wheat derivatives. Breed Sci 57:17–21CrossRefGoogle Scholar
  59. Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W (2013) Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS One 8:e69501CrossRefGoogle Scholar
  60. Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Protocols for nucleic acid analysis by nonradioactive probes. Humana Press, Totowa, pp 9–15Google Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  62. Terasawa Y, Rahman SM, Takata K, Ikeda TM (2012) Distribution of Hordoindoline genes in the genus Hordeum. Theor Appl Genet 124:143–151CrossRefGoogle Scholar
  63. Topping D (2007) Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 46:220–229CrossRefGoogle Scholar
  64. Van den Bulck K, Loosveld AMA, Courtin CM, Proost P, Van Damme J, Robben J, Mort A, Delcour JA (2002) Amino acid sequence of wheat flour arabinogalactan-peptide, identical to part of grain softness protein GSP-1, leads to improved structural model. Cereal Chem 79:329–331CrossRefGoogle Scholar
  65. Wilkinson MD, Castells-Brooke N, Shewry PR (2013) Diversity of sequences encoded by the Gsp-1 genes in wheat and other grass species. J Cereal Sci 57:1–9CrossRefGoogle Scholar
  66. Wilkinson MD, Tosi P, Lovegrove A, Corol DI, Ward JL, Palmer R, Powers S, Passmore D, Webster G, Marcus SE, Knox JP, Shewry PR (2017) The Gsp-1 genes encode the wheat arabinogalactan peptide. J Cereal Sci 74:155–164CrossRefGoogle Scholar
  67. Wilkinson M, King R, Grimaldi R (2018) Sequence diversity and identification of novel puroindoline and grain softness protein alleles in Elymus. Agropyron and related species. Diversity 10:114CrossRefGoogle Scholar
  68. Yousofi M, Esmaeili M, Otroshy M (2013) Genetic variation among natural populations of Agropyron cristatum (Poaceae) based on SDS-PAGE of seed proteins. Iran J Bot 19:186–193Google Scholar
  69. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989CrossRefGoogle Scholar
  70. Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A, Li L (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106:129–136CrossRefGoogle Scholar
  71. Zhang Z, Song L, Han H, Zhou S, Zhang J, Yang X, Li X, Liu W, Li L (2017) Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int J Mol Sci 18:2403CrossRefGoogle Scholar
  72. Zhou S, Yan B, Li F, Zhang J, Zhang J, Ma H, Liu W, Lu Y, Yang X, Li X, Liu X, Li L (2017) RNA-Seq analysis provides the first insights into the phylogenetic relationship and interspecific variation between Agropyron cristatum and wheat. Front Plant Sci 8:1644CrossRefGoogle Scholar
  73. Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827CrossRefGoogle Scholar
  74. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de RabanalesUniversidad de CórdobaCórdobaSpain

Personalised recommendations