Advertisement

Euphytica

, 215:152 | Cite as

Identification and physical mapping of QTLs associated with flowering time in Brassica napus L.

  • Kunjiang Yu
  • Xiaodong Wang
  • Wenjing Li
  • Lijie Sun
  • Qi Peng
  • Feng Chen
  • Wei Zhang
  • Rongzhan Guan
  • Jiefu ZhangEmail author
Article
  • 56 Downloads

Abstract

Flowering time regulation is crucial to yield of rapeseed (Brassica napus L.). However, insight into the loci controlling flowering time variation in rapeseed is not clear enough. In this study, a recombinant inbred line population was used for quantitative trait locus (QTL) analysis associated with flowering time in five different environments. A total of 36 identified QTLs were obtained, and each explained 3.96–24.41% of the phenotypic variation (PV). The QTL meta-analysis showed that 36 identified QTLs were integrated into 24 consensus QTLs. Of these, eight consensus QTLs were stably expressed in at least two environments, and four with PV ≥ 10% were specifically expressed in a single environment—these 12 consensus QTLs were considered the key QTLs controlling flowering time in the AH population. Physical mapping indicated that the 12 key QTLs were mapped into 12 single genomic fragments in B. rapa and B. oleracea, and physical positions of these QTLs in the B. napus genome were further determined by referring to the B. rapa and B. oleracea genomes. Ultimately, seven candidate genes underlying the confidence intervals of five key QTLs were identified. These findings will contribute to further insight into the genetic architecture of flowering time in rapeseed.

Keywords

Brassica napus L. Flowering time QTL Physical mapping 

Notes

Acknowledgements

The work was supported by National Key Research and Development Program of China (2018YFD0100601), National Natural Science Foundation of China (31601334), Earmarked fund for China Agriculture Research System (CARS-12), Natural Science Foundation of Jiangsu Province (BK20160578), and Jiangsu Collaborative Innovation Center for Modern Crop Production. The funding bodies had no role in the experiment design, data analysis, preparation of the manuscript and decision to publish. We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Supplementary material

10681_2019_2480_MOESM1_ESM.tif (18.2 mb)
Supplementary Figure 1. Locations of flowering-time QTLs on chromosomes A2, A4, A7, A10, C2, C3, C6 and C7. For simplicity, only markers in the QTLs’ CIs and the two terminal markers of each linkage group are shown. The definitions of the colorized bars and markers are same as in Figure 2 (TIFF 18619 kb)
10681_2019_2480_MOESM2_ESM.xlsx (9 kb)
Supplementary material 2 (XLSX 9 kb)
10681_2019_2480_MOESM3_ESM.xlsx (25 kb)
Supplementary material 3 (XLSX 24 kb)
10681_2019_2480_MOESM4_ESM.docx (44 kb)
Supplementary material 4 (DOCX 44 kb)
10681_2019_2480_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 9 kb)

References

  1. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013CrossRefGoogle Scholar
  2. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326CrossRefGoogle Scholar
  3. Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106CrossRefGoogle Scholar
  4. Balsemao-Pires E, Andrade LR, Sachetto-Martins G (2013) Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67:120–125CrossRefGoogle Scholar
  5. Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953CrossRefGoogle Scholar
  6. Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174CrossRefGoogle Scholar
  7. Chen F, Zhang W, Yu K, Sun L, Gao J, Zhou X, Peng Q, Fu S, Hu M, Long W, Pu H, Chen S, Wang X, Zhang J (2018) Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L. BMC Plant Biol 18:49CrossRefGoogle Scholar
  8. Fadina O, Pankin A, Khavkin E (2013) Molecular characterization of the flowering time gene FRIGIDA in Brassica genomes A and C. Russ J Plant Physiol 60:279–289CrossRefGoogle Scholar
  9. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256CrossRefGoogle Scholar
  10. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot Lond 103:1165–1172CrossRefGoogle Scholar
  11. Hirano HY, Tanaka W, Toriba T (2014) Grass flower development. In: Riechmann JL, Wellmer F (eds) Flower development. Springer, New York, pp 57–84CrossRefGoogle Scholar
  12. Hong JK, Kim SY, Kim KS, Kwon SJ, Kim JS, Kim JA, Lee SI, Lee YH (2013) Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus. Plant Biotechnol Rep 3:231–237CrossRefGoogle Scholar
  13. Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238CrossRefGoogle Scholar
  14. Javed N, Geng J, Tahir M, McVetty PBE, Li G, Duncan RW (2016) Identification of QTL influencing seed oil content, fatty acid profile and days to flowering in Brassica napus L. Euphytica 207:191–211CrossRefGoogle Scholar
  15. Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS, Liu M, Li J, Xu X, Paterson AH, Liu L (2019) Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genom 20:21CrossRefGoogle Scholar
  16. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965CrossRefGoogle Scholar
  17. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299CrossRefGoogle Scholar
  18. Li J, Chen X (2003) PAUSED, a putative exportin-t, acts pleiotropically in Arabidopsis development but is dispensable for viability. Plant Physiol 132:1913–1924CrossRefGoogle Scholar
  19. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefGoogle Scholar
  20. Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120CrossRefGoogle Scholar
  21. Li B, Zhao W, Li D, Chao H, Zhao X, Ta N, Li Y, Guan Z, Guo L, Zhang L, Li S, Wang H, Li M (2018) Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci 277:296–310CrossRefGoogle Scholar
  22. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930CrossRefGoogle Scholar
  23. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Lim YP, Choi SR, Park BS, Meng J (2008) Flowering time QTL analysis of oilseed Brassica in multiple environments and genome-wide alignment with Arabidopsis. Genetics 177:2433–2444CrossRefGoogle Scholar
  24. Lu S, Liu H, Knowles S, Li J, Ma L, Tobin E, Lin C (2011) A role for protein kinase CK2 alpha subunits in the Arabidopsis circadian clock. Plant Physiol 157:1537–1545CrossRefGoogle Scholar
  25. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefGoogle Scholar
  26. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277CrossRefGoogle Scholar
  27. Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465CrossRefGoogle Scholar
  28. Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283CrossRefGoogle Scholar
  29. Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80CrossRefGoogle Scholar
  30. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956CrossRefGoogle Scholar
  31. Moon J, Suh S, Lee H, Choi K, Hong CB, Paek N, Kim S, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623CrossRefGoogle Scholar
  32. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128CrossRefGoogle Scholar
  33. Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201:16–30CrossRefGoogle Scholar
  34. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857CrossRefGoogle Scholar
  35. Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132CrossRefGoogle Scholar
  36. Ripoll JJ, Rodríguez-Cazorla E, González-Reig S, Andújar A, Alonso-Cantabrana H, Perez-Amador MA, Carbonell J, Martínez-Laborda A, Vera A (2009) Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C. Dev Biol 333:251–262CrossRefGoogle Scholar
  37. Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 5:763–772CrossRefGoogle Scholar
  38. Schwarz-Sommer Z, Huijser P, Nacken W (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 4983:931–936CrossRefGoogle Scholar
  39. Shen Y, Xiang Y, Xu E, Ge X, Li Z (2018) Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci 9:390CrossRefGoogle Scholar
  40. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedPubMedCentralGoogle Scholar
  41. Song YH, Lee I, Lee SY, Imaizumi T, Hong JC (2011) CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J 69:332–342CrossRefGoogle Scholar
  42. Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 5:545–553CrossRefGoogle Scholar
  43. Van Der Krol AR, Chua NH (1993) Flower development in Petunia. Plant Cell 5:1195–1203CrossRefGoogle Scholar
  44. Van Tienderen PH, Hammad I, Zwaal FC (1996) Pleiotropic effects of flowering time genes in the annual crucifer Arabidopsis thaliana (Brassicaceae). Am J Bot 83:169–174CrossRefGoogle Scholar
  45. Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:1–13CrossRefGoogle Scholar
  46. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S, Choi S, Lee T, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039CrossRefGoogle Scholar
  47. Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569CrossRefGoogle Scholar
  48. Wang X, Yu K, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M, Zhang J (2015) High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L. Front Plant Sci 6:1164PubMedPubMedCentralGoogle Scholar
  49. Wei D, Mei J, Fu Y, Disi JO, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804CrossRefGoogle Scholar
  50. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 5:843–859CrossRefGoogle Scholar
  51. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527CrossRefGoogle Scholar
  52. Xu J, Dai H (2016) Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regul 80:315–322CrossRefGoogle Scholar
  53. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2015) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52PubMedPubMedCentralGoogle Scholar
  54. Yi L, Chen C, Yin S, Li H, Li Z, Wang B, King GJ, Wang J, Liu K (2018) Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus. BMC Plant Biol 18:32CrossRefGoogle Scholar
  55. Ying L, Chen H, Cai W (2014) BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Plant Physiol Biochem 79:77–87CrossRefGoogle Scholar
  56. Yu K, Wang X, Chen F, Chen S, Peng Q, Li H, Zhang W, Hu M, Chu P, Zhang J, Guan R (2016) Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L. Sci Rep 6:30576CrossRefGoogle Scholar
  57. Yu K, Wang X, Chen F, Peng Q, Chen S, Li H, Zhang W, Fu S, Hu M, Long W, Chu P, Guan R, Zhang J (2018) Quantitative trait transcripts mapping coupled with expression quantitative trait loci mapping reveal the molecular network regulating the apetalous characteristic in Brassica napus L. Front Plant Sci 9:89CrossRefGoogle Scholar
  58. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  59. Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J (2012) Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS ONE 7:e45751CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Kunjiang Yu
    • 1
    • 2
  • Xiaodong Wang
    • 1
  • Wenjing Li
    • 3
  • Lijie Sun
    • 1
  • Qi Peng
    • 1
  • Feng Chen
    • 1
  • Wei Zhang
    • 1
  • Rongzhan Guan
    • 4
  • Jiefu Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.College of AgricultureGuizhou UniversityGuiyangChina
  3. 3.Jiangsu Institute of Science and Technology InformationNanjingChina
  4. 4.State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina

Personalised recommendations