, 215:169 | Cite as

New melon introgression lines in a Piel de Sapo genetic background with desirable agronomical traits from dudaim melons

  • Gabriel Castro
  • Gorka Perpiñá
  • Antonio José Monforte
  • Belén PicóEmail author
  • Cristina EsterasEmail author


A new collection of introgression lines (ILs) have been developed using the Spanish cultivar ‘Piel de Sapo’ (PS, subsp. melo, group ibericus) as the recurrent parent, and ‘Queen’s pocket melon’ (DUD, subsp. melo, group dudaim PI 273438) as donor. Genome-wide markers assisted selection has been proceed in several backcross generations to obtain a set of 16 ILs. An average of 1.4 introgressions/plant representing altogether about 62% of the DUD genome, and with an average of recovery per IL of 93.9% of the PS genetic background, has been accomplished in the selected ILs after several backcrosses and selfings. QTLs for abscission layer, external aroma, rind and flesh firmness, rind netting, fruit weight and shape, and sugar content have been identified on this set of ILs some of them corresponding to genomic regions previously described or with interesting candidate genes, but, also, new allelic diversity has been identified. Thus, this set of ILs may be useful to exploit new underexploited genetic variability from DUD. Based on GBS results for five of this ILs, further steps of backcrossing will be necessary to clean up the small introgressions detected in some of them. Novel phenotypes like small PS melons or aromatic and medium-climacteric PS melons were obtained, which might become pre-breeding lines with potential commercial interest.


C. melo Genetic resources QTLs Climacteric Piel de Sapo Small melons Quality traits 



This work was supported by the Spanish Ministerio de Educación through an ERA-NET Plant Genomics project (MELRIP: GEN2006-27773-C2-2-E), by the Spanish Ministerio de Economía de Empresa through a Plant KBBE Project (SAFQIM: PIM2010PKB-00691), by the Spanish Ministerio de Economía y Competitividad AGL2015-64625-C2-2-R, and by the Spanish Ministerio de Ciencia, Innovación y Universidades AGL2017-85563-C2-1-R (jointly funded by FEDER). This work was also partly supported by the Programa de Valorización y Recursos Conjuntos de I + D + i de VLC/CAMPUS funded by the Ministerio de Educación, Cultura y Deporte as part of the Programa Campus de Excelencia Internacional.

Supplementary material

10681_2019_2479_MOESM1_ESM.xlsx (32 kb)
Online resource 1. SNPs employed in the construction of the IL population. This set was selected from those previously mapped and employed to anchor the first version of the melon genome (Garcia-Mas et al. 2012). Also, positions in the new genetic map by Argyris et al. (2015) are indicated, as well as the physical position for genome assembly in the version v.3.5.1 and the most recent v.3.6.1, available at Melonomics. Information about the SNP and flanking sequence is included for all the markers used in the Agena Bioscience assay, and the primers for those that were adapted to the HRM genotyping procedure are also provided. Markers that could not be accurately called in the Agena Bioscience assay are marked as failed markers (f) (XLSX 31 kb)
10681_2019_2479_MOESM2_ESM.xlsx (17 kb)
Online resource 2. Evaluation of the normality of every trait distribution for Paip16 and Paip17 populations with the Shapiro–Wilk and Kolmogorov–Smirnov tests using Statgraphics Centurion XVII.II (XLSX 17 kb)
10681_2019_2479_MOESM3_ESM.xlsx (24 kb)
Online resource 3. Graphical genotype of the 16 ILs selected. Location in chromosomes including genetic position according to maps by Garcia-Mas et al. (2012) and Argyris et al. (2015), and physical position in melon genome assembly v.3.6.1, for the genetic background markers is indicated. Violet boxes indicate DUD homozygous introgressions, green boxes indicate the PS genetic background, yellow boxes indicate DUD heterozygosis and red boxes correspond to no calls (XLSX 23 kb)
10681_2019_2479_MOESM4_ESM.xlsx (526 kb)
Online resource 4. GBS results. A. Genotype data for the 5 selected ILs and parents PS and DUD genotyped by GBS. B. Summary of introgressions found in the 5 selected ILs genotyped using GBS technology (only introgressions longer than 5Kbp) (XLSX 525 kb)
10681_2019_2479_MOESM5_ESM.xlsx (30 kb)
Online resource 5. Mean value, standard deviation and standard error of the mean, along with ANOVA results for means comparison of both parents, PS and DUD, is shown for each trait in the two trials in which they were phenotyped along with the ILs. The asterisk (*) indicate significant difference with respect to the parent PS (XLSX 29 kb)
10681_2019_2479_MOESM6_ESM.xlsx (18 kb)
Online resource 6. QTLs identified by the Dunnet’s Test in two environments in the IL collection. Abbreviated trait name, QTL name, chromosome, QTL position (cM) and flanking markers, DUD effect relative to the PS parental abçnd expressed in percentage (%) with positive/negative effects, IL carrying the introgression. Introgression position (cM) and flanking markers in the IL, and information about other introgressions in these ILs (XLSX 17 kb)
10681_2019_2479_MOESM7_ESM.xlsx (13 kb)
Online resource 7. Percentage of variance explained for every trait for genotype, environment and the interaction (XLSX 12 kb)
10681_2019_2479_MOESM8_ESM.xlsx (24 kb)
Online resource 8. Genes located in the introgressions detected in the set of 16 ILs related to the traits analyzed (XLSX 23 kb)
10681_2019_2479_MOESM9_ESM.xlsx (14 kb)
Online resource 9. Correlation coefficient (p < 0.05) for the traits analyzed in both trials Paip16 and Paip17 (XLSX 14 kb)


  1. Amanullah S, Liu S, Gao P, Zhu Z, Zhu Q, Fan C, Luan F (2018) QTL mapping for melon (Cucumis melo L.) fruit traits by assembling and utilization of novel SNPs based CAPS markers. Sci Hortic 236:18–29. CrossRefGoogle Scholar
  2. Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J (2015) Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genom 16:1–14. CrossRefGoogle Scholar
  3. Argyris JM, Díaz A, Ruggieri V, Fernández M, Jahrmana T, Gibon Y, Picó B, Martin-Hernández AM, Monforte AJ, Garcia-Mas J (2017) QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Front Plant Sci 8:1–20. CrossRefGoogle Scholar
  4. Aubert C, Pitrat M (2006) Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. J Agric Food Chem 54:8177–8182. CrossRefPubMedGoogle Scholar
  5. Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C, Gibon Y, Hansen TH, Husted S, de Vos RCH, Mumm R, Jonker H, Ward JL, Miller SJ, Baker JM, Burger J, Tadmor Y, Beale MH, Schjoerring JK, Schaffer AA, Rolin D, Hall RD, Moing A (2013) Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 9:57–77CrossRefGoogle Scholar
  6. Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, Picó B (2011) Melon Transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome 4(2):118–131. CrossRefGoogle Scholar
  7. Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernández-Pedrosa V, Collado C, de Pablos RR, Ballester A, Roig C, Cañizares J, Picó B (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genom 13:1–18. CrossRefGoogle Scholar
  8. Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for value fruit quality traits in Cucumis melo. Isr J Plant Sci 54:233–242. CrossRefGoogle Scholar
  9. Dantas ACA, Araujo IS, Esteras C, Nunes GHS, Pico MB (2015) Diversity of melon accessions from northeastern Brazil and their relationships with germplasms of diverse origins. J Am Soc Hortic Sci 10:505–517. CrossRefGoogle Scholar
  10. Díaz A, Fergany M, Formisano G et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Díaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte AJ (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed 35:1–7. CrossRefGoogle Scholar
  12. Díaz A, Martín-Hernández AM, Dolcet-Sanjuan R, Garces-Claver A, Álvarez JM, Garcia-Mas J, Picó B, Monforte AJ (2017) Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theor Appl Genet 130:1837–1856. CrossRefPubMedGoogle Scholar
  13. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(13–15):58Google Scholar
  14. Dunnett C (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  15. Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148. CrossRefPubMedGoogle Scholar
  16. Eduardo I, Arús P, Monforte AJ, Obando J, Fernández-trujillo JP, Martínez JA, Alarcón AL, Álvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89. CrossRefGoogle Scholar
  17. Endl J, Achigan-Dako EG, Pandey AK, Monforte AJ, Picó B, Schaeffer H (2018) Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. Am J Bot 105:1662–1671. CrossRefPubMedGoogle Scholar
  18. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedPubMedCentralGoogle Scholar
  19. Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303. CrossRefPubMedGoogle Scholar
  20. Esteras C, Rambla JL, Sánchez G, López-Gresa MP, González-Mas MC, Fernández-Trujillo JP, Bellés JM, Granell A, Picó B (2018) Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J Sci Food Agric 98:3915–3925. CrossRefPubMedGoogle Scholar
  21. FAO (FAOSTAT) (2016) Accessed 30 Jan 2019
  22. FAO (FAOSTAT) (2017) Accessed 30 Jan 2019
  23. Feder A, Burger J, Gao S et al (2015) A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo L. Plant Physiol 169:1714–1726. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galpaz N, Gonda I, Shem-Tov D et al (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191. CrossRefPubMedGoogle Scholar
  25. Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci 109:11872–11877. CrossRefPubMedGoogle Scholar
  26. Gur A, Gonda I, Portnoy V et al (2016) Genomic aspects of melon fruit quality. In: Grumet R, Katzir N, García-Mas J (eds) Genetics and genomics of cucurbitaceae. Springer, Cham, pp 377–408CrossRefGoogle Scholar
  27. Gur A, Tzuri G, Meir A, Sa’ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y (2017) Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep 7:1–13. CrossRefGoogle Scholar
  28. Harel-Beja R, Tzuri G, Portnoy V et al (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533. CrossRefPubMedGoogle Scholar
  29. Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129. CrossRefGoogle Scholar
  30. Lázaro A, Fernandez IC, Borrero MJ, Cabello F, Lopez-Sese A, Gómez-Guillamon M, Picó B (2017) Agromorphological genetic diversity of spanish traditional melons. Genet Resour Crop Evol 7(64):1687–1706. CrossRefGoogle Scholar
  31. Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 16:1–17. CrossRefGoogle Scholar
  32. López C, Ferriol M, Picó MB (2015) Mechanical transmission of tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica 204:679–691. CrossRefGoogle Scholar
  33. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758. CrossRefPubMedGoogle Scholar
  34. Monforte AJ, Iban E, Silvia A, Pere A (2005) Inheritance mode of fruit traits in melon: heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38. CrossRefGoogle Scholar
  35. Monforte AJ, Díaz A, Caño-Delgado A, Van Der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637. CrossRefPubMedGoogle Scholar
  36. Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602. CrossRefPubMedGoogle Scholar
  37. Nimmakayala P, Tomason YR, Abburi VL et al (2016) Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci 7:1–15. CrossRefGoogle Scholar
  38. Nunes EWLP, Esteras C, Ricarte AO et al (2017) Brazilian melon landraces resistant to Podosphaera xanthii are unique germplasm resources. Ann Appl Biol 171:214–228. CrossRefGoogle Scholar
  39. Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic x elite US Western Shipping germplasm. Mol Breed 22:405–419. CrossRefGoogle Scholar
  40. Paris HS, Amar Z, Lev E (2012) Medieval history of the Duda’im melon (Cucumis melo, Cucurbitaceae). Econ Bot 66(3):276–284CrossRefGoogle Scholar
  41. Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L (2017) Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genom 18:1–10. CrossRefGoogle Scholar
  42. Pereira L (2018) Genetic dissection of fruit quality and ripening traits in melon. Barcelona (doctoral thesis), Universitat Autònoma de Barcelona. Barcelona, Spain. Retrieved from Accessed 10 April 2019.
  43. Pereira L, Ruggieri V, Pérez S, Alexiou KG, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J (2018) QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol 18:1–17. CrossRefGoogle Scholar
  44. Périn C, Gomez-jimenez M, Hagen L, Dogimont C, Pech JC, Latché A, Pitrat M, Lelièvre JM (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Pathol 129:300–309. CrossRefGoogle Scholar
  45. Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:1–21. CrossRefGoogle Scholar
  46. Perpiñá G, Cebolla-Cornejo J, Esteras C, Monforte AJ, Picó B (2017) “MAK-10”: a long shelf-life charentais breeding line developed by introgression of a genomic region from Makuwa melon. HortScience 52:1633–1638. CrossRefGoogle Scholar
  47. Pitrat M (2017) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of the Cucurbitaceae. Springer, New York, pp 25–60Google Scholar
  48. Ramamurthy RK, Waters BM (2015) Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204:163–177. CrossRefGoogle Scholar
  49. Ríos P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Picó B, Monforte AJ, Garcia-Mas J (2017) ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J 91:671–683. CrossRefPubMedGoogle Scholar
  50. Rodriguez GR, Muños S, Anderson C, Sim S-C, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sabato D, Esteras C, Grillo O, Pico B, Bacchetta G (2015) Seed morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Sci Hortic 192:441–452. CrossRefGoogle Scholar
  52. Vegas J, Garcia-Mas J, Monforte AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126:1531–1544. CrossRefPubMedGoogle Scholar
  53. Vossen RHAM, Aten E, Roos A, Den Dunnen JT (2009) High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 30:860–866. CrossRefPubMedGoogle Scholar
  54. Wu J, Chang Z, Wu Q, Zhan H, Xie S (2011) Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers. Sci Hortic 128:7–13. CrossRefGoogle Scholar
  55. Wu S, Clevenger JP, Sun L, Visa S, Kamiya Y, Jikumaru Y, Blakeslee J, van der Knapp E (2015) The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci 238:95–104. CrossRefPubMedGoogle Scholar
  56. Wu S, Zhang B, Keyhaninejad N et al (2018) A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun 9:1–12. CrossRefGoogle Scholar
  57. Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201. CrossRefPubMedGoogle Scholar
  58. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad ValencianaUniversitat Politècnica de València (COMAV-UPV)ValenciaSpain
  2. 2.Instituto de Biología Molecular y Celular de Plantas (IBMCP) UPV-CSICValenciaSpain

Personalised recommendations