, 215:145 | Cite as

Sodium azide mutagenesis generated diverse and broad spectrum blast resistance mutants in rice

  • Chang-Sheng WangEmail author
  • Kuan-Lin Lo
  • Arthur Z. Wang


Genetic mutagenesis can create novel alleles that do not exist in nature germplasms and has been widely used for the improvement of crop plants. Rice blast caused by Magnaporthe oryzae is one of the most destructive disease for rice production. For now, limited mutation-derived varieties associated with blast resistance were reported. In this study, a rice TNG67 mutant pool, developed by using sodium azide (SA) mutagenesis, contained more than 3000 pure mutant lines (SA mutants), were utilized. 50 SA mutants derived from rice blast susceptible variety TNG67 as well as other commercial and differential varieties were challenged with 89 blast isolates collected in Taiwan to understand their blast resistance spectrum. The results showed that SA mutants displayed different responses to M. oryzae, ranging from highly susceptible (6.7%) to highly resistant (100%). Seven mutants showed broad-spectrum resistance against the tested blast isolates. Bidirectional interaction analysis revealed a better understanding of plant–pathogen interaction. Our studies demonstrate that sodium azide mutagenesis is an efficient and effective method to induce rice blast resistance and generate valuable genetic resource for blast resistance improvement.


Rice Blast disease Resistance mutant Mutagenesis Sodium azide 



We express our appreciation to the late Mr. Tung-Hai Tseng, whose contribution to this work was of great significance. We thank Mr. Yi-Chang Chang and Mrs. Lih-Jiuan Shieh for their contributions and providing pathogens in this study. Financial support partly from the Ministry of Science and Technology, Innovative Translational Agricultural Research Program from Academia Sinica, and the Higher Education Sprout Project by the Ministry of Education in Taiwan to C. S. Wang is highly appreciated.


Funding was provided by Ministry of Science and Technology, Taiwan (Grant No. MOST 107-2313-B-005-017), Academia Sinica (Grant Nos. 2014AG07s1, 2015AG07s1, 2016AG07s1, and 2017AG02s1), Ministry of Education (Grant No. 107S0204A).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2468_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 40 kb)


  1. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204. CrossRefGoogle Scholar
  2. Ashkani S, Rafii M, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer F, Akhtar M, Nasehi A (2015a) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:886. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, Latif MA (2015b) Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Curr Issues Mol Biol 17:57–73PubMedGoogle Scholar
  4. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36:353–367. CrossRefPubMedGoogle Scholar
  5. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M-H, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147. CrossRefPubMedGoogle Scholar
  6. Buu RH, Huang CS (1983) Studies on the improvement of blast disease resistance of Japonica rice, Tainung 67. J Agric Res China 32:201–208. CrossRefGoogle Scholar
  7. Chen CH (2002) Generalized association plots: information visualization via iteratively generated correlation matrices. Stat Sin 12:7–29Google Scholar
  8. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5:7773. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gangadharan C, Mathur SC (1976) Diethyl sulphate induced blast resistant mutants in rice variety Mtu. 17. Sci Cult 42:226–228Google Scholar
  10. Huang J, Si W, Deng Q, Li P, Yang S (2014) Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet 15:45. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hung CH, Chien CC, Lin SY (1961) Study on the physiological races of Pyricularia oryzae Cav. Agric Res Taiwan 10:27–34Google Scholar
  12. Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T (2008) Genetic analysis of blast resistance in tropical rice cultivars using near-isogenic lines. In: Rice genetics III, pp 447–450. Google Scholar
  13. Jeng TL, Wang CS, Tseng TH, Wu MT, Sung JM (2009) Nucleotide polymorphisms in the waxy gene of NaN3-induced waxy rice mutants. J Cereal Sci 49:112–116. CrossRefGoogle Scholar
  14. Jung Y-H, Lee J-H, Agrawal GK, Rakwal R, Kim J-A, Shim J-K, Lee S-K, Jeon J-S, Koh H-J, Lee Y-H, Iwahashi H, Jwa N-S (2005) The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Bioch 43:397–406. CrossRefGoogle Scholar
  15. Kaur S, Padmanabhan SY, Kaur P (1977) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IR8xTKM6). International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  16. Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  17. Kiyosawa S (1966) Resistance of some rice varieties to a blast fungus strain, Ken 54-04—an analysis of field resistance (in Japanese). Nogyo Oyobi Engei (Agric Hortic) 41:1229–1230Google Scholar
  18. Koide Y, Kobayashi N, Xu DH, Fukuta Y (2009) Resistance genes and selection DNA markers for blast disease in rice (Oryza sativa L.). Jpn Agric Res Q 43:255–280CrossRefGoogle Scholar
  19. Kuribayashi K, Terasawa M (1953) On the injection-inoculation method using spore suspension of rice blast-fungus Piricularia oryzae Cav. Proc Assoc Plant Prot Hokuriku 3:9–10Google Scholar
  20. Lin HY, Wu YP, Hour AL, Ho SW, Wei FJ, Hsing YIC, Lin YR (2012) Genetic diversity of rice germplasm used in Taiwan breeding programs. Bot Stud 53:363–376Google Scholar
  21. Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241. CrossRefPubMedGoogle Scholar
  22. Mackill DJ, Bonman JM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749. CrossRefGoogle Scholar
  23. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40:2369–2388. CrossRefPubMedGoogle Scholar
  24. Mizobuchi R, Hirabayashi H, Kaji R, Nishizawa Y, Yoshimura A, Satoh H, Ogawa T, Okamoto M (2002) Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci 163:345–353. CrossRefGoogle Scholar
  25. Mohamad O, Mohd Nazir B, Abdul Rahim H, Alias I, Azlan S, Othman O, Hadzim K, Saad A, Abdullah MZ, Habibuddin H, Golam F (2006) Development of improved rice varieties through the use of induced mutations in Malaysia. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  26. Muralidharan K, Krishnaveni D, Laha GS, Reddy CS, Srinivasprasad M, Sridhar R (2004) Performance of rice blast resistance genes in multi-environment tests in India. Indian Phytopathol 57:260–266Google Scholar
  27. Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS ONE 11:e0167295. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16. CrossRefGoogle Scholar
  29. Olsen O, Wang X, von Wettstein D (1993) Sodium azide mutagenesis: preferential generation of A.T → G.C transitions in the barley Ant18 gene. Proc Natl Acad Sci USA 90:8043–8047CrossRefGoogle Scholar
  30. Ou SH (1980) Pathogen variability and host-resistance in rice blast disease. Annu Rev Phytopathol 18:167–187. CrossRefGoogle Scholar
  31. Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J-L (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803. CrossRefPubMedGoogle Scholar
  32. Seck PA, Diagne A, Mohanty S, Wopereis MCS (2012) Crops that feed the world 7: rice. Food Secur 4:7–24. CrossRefGoogle Scholar
  33. Sheng Z, Li Q, Li W, Chen W, Wei X, Xie L, Jiao G, Shao G, Wang J, Tang S, Hu P (2017) Identification of a three-base deletion in the Pi2 locus, and development of functional marker for marker-assisted resistance selection. Euphytica 213:202. CrossRefGoogle Scholar
  34. Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. FAO, RomeCrossRefGoogle Scholar
  35. Srivastava D, Shamim M, Kumar M, Mishra A, Pandey P, Kumar D, Yadav P, Siddiqui MH, Singh KN (2017) Current status of conventional and molecular interventions for blast resistance in rice. Rice Sci 24:299–321. CrossRefGoogle Scholar
  36. Su J, Wang WJ, Han JL, Chen S, Wang CY, Zeng LX, Feng AQ, Yang JY, Zhou B, Zhu XY (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128:2213–2225. CrossRefPubMedGoogle Scholar
  37. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Gen Genet 279:213–223. CrossRefGoogle Scholar
  38. Tai TH, Chun A, Henry IM, Ngo KJ, Burkart-Waco D (2016) Effectiveness of sodium azide alone compared to sodium azide in combination with methyl nitrosurea for rice mutagenesis. Plant Breed Biotechnol 4:453–461. CrossRefGoogle Scholar
  39. Takahashi A, Kawasaki T, Henmi K, Shii K, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545. CrossRefPubMedGoogle Scholar
  40. Tharreau D, Roumen E, Lorieux M, Price A, Dioh W, Ghesquière A, Lebrun M, Notteghem JL (2000) New tools for resistance gene characterisation in rice. In: Tharreau D, Lebrun MH, Talbot NJ, Notteghem JL (eds) Advances in rice blast research. Developments in plant pathology, vol 15. Springer, Dordrecht, pp 54–62. CrossRefGoogle Scholar
  41. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang CS, Tseng TH, Lin CY (2002) Rice biotech research at the Taiwan Agricultural Research Institute. Asia Pacific Biotech News 6:950–956CrossRefGoogle Scholar
  43. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97. CrossRefPubMedGoogle Scholar
  44. Wu C, Bordeos A, Madamba MRS, Baraoidan M, Ramos M, Wang G-l, Leach JE, Leung H (2008) Rice lesion mimic mutants with enhanced resistance to diseases. Mol Gen Genet 279:605–619. CrossRefGoogle Scholar
  45. Yang SH, Feng ZM, Zhang XY, Jiang K, Jin XQ, Hang YY, Chen JQ, Tian DC (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193. CrossRefPubMedGoogle Scholar
  46. Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13:869–876. CrossRefPubMedGoogle Scholar
  47. Zhang MX, Xu JL, Luo RT, Shi D, Li ZK (2003) Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917. Euphytica 130:71–76. CrossRefGoogle Scholar
  48. Zhang X, Yang S, Wang J, Jia Y, Huang J, Tan S, Zhong Y, Wang L, Gu L, Chen JQ, Pan Q, Bergelson J, Tian D (2015) A genome-wide survey reveals abundant rice blast R genes in resistant cultivars. Plant J 84:20–28. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Chang-Sheng Wang
    • 1
    • 2
    Email author
  • Kuan-Lin Lo
    • 1
  • Arthur Z. Wang
    • 1
  1. 1.Department of AgronomyNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations