Advertisement

Euphytica

, 215:151 | Cite as

Response of IITA maize inbred lines bred for Striga hermonthica resistance to Striga asiatica and associated resistance mechanisms in southern Africa

  • Edmore Gasura
  • Peter SetimelaEmail author
  • Stanford Mabasa
  • Rwafa Rwafa
  • Susan Kageler
  • Cacious Nyakurwa
Article
  • 24 Downloads

Abstract

Striga spp. is endemic in sub-Saharan Africa causing up to 100% yield loss equating to US$ 7 billion. Striga asiatica (with red flowers) is found in southern Africa while Striga hermonthica (with purple flowers) is found in east and west Africa. At the International Institute of Tropical Agriculture, resistance to S. hermonthica was introgressed from wild relatives into commercial maize. This study aimed at ascertaining resistance to S. hermonthica and associated mechanisms that could effectively control S. asiatica. Thirty maize inbred lines were evaluated for S. asiatica resistance using the pot culture and agar gel technique. The pot experiment was arranged in a 10 × 6 α-lattice design with three replications and the gar gel experiments were conducted in complete randomized design with four replications. Maize inbred lines were significantly different (P < 0.001) for Striga seed germination stimulant production. Inbred lines 2, 32, 28, 29, 27, 33, 7, and 14 recorded less than 10 mm in furthest Striga seed germinated and were identified as resistant with a mechanisms of reduced amounts of germination stimulants. Significant differences (P < 0.05) were also noted for plant height, stem, root, leaf and total biomass, the number of Striga root attachments and emerged Striga for the pot experiment. Inbred lines 18, 27, 20 and 32 had low Striga haustorial attachments. Identified resistant lines could be used in either genetic studies or genetic improvement for S. asiatica resistance by making sure that different mechanisms are stacked in a given variety.

Keywords

Striga resistance Resistance mechanisms Striga asiatica Zea mays 

Abbreviations

ANOVA

Analysis of variance

CIMMYT

International Maize and Wheat Improvement Centre

EAGA

Extended agar gel assay

IITA

International Institute of Tropical Agriculture

SSA

Sub-Saharan Africa

WAP

Weeks after planting

Notes

Acknowledgements

We are grateful to IITA for provision of germplasm and scientific procedures.

References

  1. Akanvou L, Doku E, Kling J (1997) Estimates of genetic variances and interrelationships of traits associated with striga resistance in maize. Afr Crop Sci J 5:1–8CrossRefGoogle Scholar
  2. Badu-Apraku B, Fakorede M, Lum AF (2007) Evaluation of experimental varieties from recurrent selection for Striga resistance in two extra-early maize populations in the savannas of West and Central Africa. Exp Agric 43:183–200CrossRefGoogle Scholar
  3. Badu-Apraku B, Yallou C, Alidu H, Talabi A, Akaogu I, Annor B et al (2016) Genetic improvement of extra-early maize cultivars for grain yield and resistance during three breeding eras. Crop Sci 56:2564–2578CrossRefGoogle Scholar
  4. Berner D, Carsky R, Dashiell K, Kling J, Manyong V (1996) A land management based approach to integrated Striga hermonthica control in sub-Saharan Africa. Outlook Agric 25:157–164CrossRefGoogle Scholar
  5. Cala A, Ghooray K, Fernández-Aparicio M, Molinillo JM, Galindo JC, Rubiales D et al (2016) Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds. Pest Manag Sci 72:2069–2081CrossRefGoogle Scholar
  6. De Groote H, Wangare L, Kanampiu F, Odendo M, Diallo A, Karaya H et al (2008) The potential of a herbicide resistant maize technology for Striga control in Africa. Agric Syst 97:83–94CrossRefGoogle Scholar
  7. Doggett H (1988) Witchweed (Striga). Sorghum 2:368–404Google Scholar
  8. Dugje I, Kamara A, Omoigui L (2006) Infestation of crop fields by Striga species in the savanna zones of northeast Nigeria. Agric Ecosyst Environ 116:251–254CrossRefGoogle Scholar
  9. Efron Y, Kim SK, Parkinson V, Bosque-Perez NA (1989) IITA’s strategies to develop Striga resistant maize germplasm. Striga—improved management in Africa. In: Robinson TO, Broad HR (eds) Proceedings, FAO/OAU all-African government consultation on Striga control, Rome, pp 141–153Google Scholar
  10. Ejeta et al (1991) Genetic and breeding strategies for Striga resistance in sorghum. In: 5. International symposium of parasitic weeds, Nairobi (Kenya), 24–30 Jun 1991, CIMMYTGoogle Scholar
  11. English TJ, Eplee RE, Norris RS (1995) Successful witchweed eradication strategies employed in North and South Carolina. In: Proceedings of the Southern Weed Science Society. Champaign, IL: Southern Weed Science Society, pp 193Google Scholar
  12. Ezeaku I, Gupta S (2004) Development of sorghum populations for resistance to Striga hermonthica in the Nigerian Sudan Savanna. Afr J Biotechnol 3:324–329CrossRefGoogle Scholar
  13. GenStat (2011) 14.1 Lawes agricultural trust, rothamsted experimental station, Harpenden, UK. Registered to Cranfield University, UKGoogle Scholar
  14. Gethi JG, Smith ME (2004) Genetic responses of single crosses of maize to (Del.) Benth and (L.) Kuntze. Crop Sci 44:2068–2077CrossRefGoogle Scholar
  15. Gowda BS, Riopel JL, Timko MP (1999) NRSA-1: a resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed). Plant J 20:217–230CrossRefGoogle Scholar
  16. Gurney A, Press M, Scholes J (2002a) Can wild relatives of sorghum provide new sources of resistance or tolerance against Striga species? Weed Res 42:317–324CrossRefGoogle Scholar
  17. Gurney A, Taylor A, Mbwaga A, Scholes J, Press M (2002b) Do maize cultivars demonstrate tolerance to the parasitic weed Striga asiatica? Weed Res 42:299–306CrossRefGoogle Scholar
  18. Haussmann BI, Hess DE, Welz H-G, Geiger HH (2000) Improved methodologies for breeding Striga-resistant sorghums. Field Crops Res 66:195–211CrossRefGoogle Scholar
  19. Hess DE, Ejeta G, Butler LG (1992) Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497CrossRefGoogle Scholar
  20. Jamil M, Rodenburg J, Charnikhova T, Bouwmeester HJ (2011) Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. N Phytol 192:964–975CrossRefGoogle Scholar
  21. Joel DM, Gressel J, Musselman LJ (2013) Parasitic Orobanchaceae: parasitic mechanisms and control strategies. Springer, New YorkCrossRefGoogle Scholar
  22. Karaya H, Njorogeb K, Mugoa S, Arigab E, Kanampiua F, Nderitub J (2012) Determination of levels of Striga germination stimulants for maize gene bank accessions and elite inbred lines. Int J Plant Prod 6:209–224Google Scholar
  23. Kim SK (1994) Genetics of maize tolerance of Striga hermonthica. Crop Sci 34(4):900–907CrossRefGoogle Scholar
  24. Kiruki S, Onek L, Limo M (2006) Azide-based mutagenesis suppresses Striga hermonthica seed germination and parasitism on maize varieties. Afr J Biotechnol 5:866Google Scholar
  25. Koga C, Mwenje E, Garwe D (2011) Response of Tobacco cultivars to varying fertiliser levels in Striga gesnerioides infested soils in Zimbabwe. Agric J 6:347–352Google Scholar
  26. Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094CrossRefGoogle Scholar
  27. Maazou A-RS, Qiu J, Mu J, Liu Z (2017) Utilization of wild relatives for maize (Zea mays L.) improvement. Afr J Plant Sci 11:105–113CrossRefGoogle Scholar
  28. Mabasa S (1996) Screening sorghum cultivars for resistance to witchweed (Striga asiatica) in Zimbabwe. In: Drought-tolerant crops for southern Africa: proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, 25–29 Jul 1994, Gaborone, BotswanaGoogle Scholar
  29. Mabasa S (2003) Nitrogen and the control of Striga asiatica on maize: timing and dose of organic and inorganic forms. Ph.D., University of Sheffield, UKGoogle Scholar
  30. MacRobert J (2009) Seed business management in Africa. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico DF (Mexico)Google Scholar
  31. Masuka B, Magorokosho C, Olsen M, Atlin GN, Bänziger M, Pixley KV et al (2017) Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open-pollinated variety breeding pipeline. Crop Sci 57:180–191CrossRefGoogle Scholar
  32. Menkir A (2006) Assessment of reactions of diverse maize inbred lines to Striga hermonthica (Del.) Benth. Plant Breed 125:131–139CrossRefGoogle Scholar
  33. Midega CA, Wasonga CJ, Hooper AM, Pickett JA, Khan ZR (2017) Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in western Kenya. Crop Protect 98:94–101CrossRefGoogle Scholar
  34. Mohamed A, Ellicott A, Housley T, Ejeta G (2003) Hypersensitive response to infection in Sorghum. Crop Sci 43:1320–1324CrossRefGoogle Scholar
  35. Mohamed AH, Housley T, Ejeta G (2010) An in vitro technique for studying specific Striga resistance mechanisms in sorghum. Afr J Agric Res 5:1868–1875Google Scholar
  36. Mrema E, Shimelis H, Laing M, Bucheyeki T (2017) Farmers’ perceptions of sorghum production constraints and Striga control practices in semi-arid areas of Tanzania. Int J Pest Manag 63:146–156CrossRefGoogle Scholar
  37. Musselman LJ (1980) The biology of Striga, Orobanche, and other root-parasitic weeds. Ann Rev Phytopathol 18:463–489CrossRefGoogle Scholar
  38. N’cho SA, Mourits M, Rodenburg J, Demont M, Lansink AO (2014) Determinants of parasitic weed infestation in rainfed lowland rice in Benin. Agric Syst 130:105–115CrossRefGoogle Scholar
  39. N’cho A, Mourits M, Demont M, Adegbola P, Lansink AO (2017) Impact of infestation by parasitic weeds on rice farmers’ productivity and technical efficiency in sub-Saharan Africa. Afr J Agric Res Econ 12:35–50CrossRefGoogle Scholar
  40. Ngugi K, Ngugi AJ, Osama S, Mugoya C (2016) Combating Striga weed in sorghum by transferring resistance quantitative trait loci through molecular marker assisted introgression. J Plant Breed Genet 3:67–76Google Scholar
  41. Nyakurwa CS, Gasura E, Setimela PS, Mabasa S, Rugare JT, Mutsvanga S (2018) Reaction of new quality protein maize genotypes to Striga asiatica. Crop Sci 58(3):1201–1218CrossRefGoogle Scholar
  42. Nzioki H, Oyosi F, Morris C, Kaya E, Pilgeram A, Baker C et al (2016) Striga biocontrol on a toothpick: a readily deployable and inexpensive method for smallholder farmers. Front Plant Sci 7:1121CrossRefGoogle Scholar
  43. Obilana A, Ramaiah K (1992) Striga (witchweeds) in sorghum and millet: Knowledge and future research needs. In: Sorghum and millets diseases: a second world review, vol 502, p 187Google Scholar
  44. Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60:269–276CrossRefGoogle Scholar
  45. Pierce S, Mbwaga A, Press M, Scholes J (2003) Xenognosin production and tolerance to Striga asiatica infection of high-yielding maize cultivars. Weed Res 43:139–145CrossRefGoogle Scholar
  46. Prasanna B (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855CrossRefGoogle Scholar
  47. Ransom JK, Eplee RE, Langston MA (1990) Genetic variability for resistance to Striga asiatica in maize. Cereal Res Commun 18:329–333Google Scholar
  48. Reda F, Butler L, Ejeta G, Ransom J (1994) Screening of maize genotypes for low Striga asiatica stimulant production using the Agar Gel Technique. Afr Crop Sci J 2:173–177Google Scholar
  49. Rich PJ, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3:618–621CrossRefGoogle Scholar
  50. Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229CrossRefGoogle Scholar
  51. Rodenburg J, Bastiaans L (2011) Host-plant defence against Striga spp.: reconsidering the role of tolerance. Weed Res 51:438–441CrossRefGoogle Scholar
  52. Rodenburg J, Riches CR, Kayeke JM (2010) Addressing current and future problems of parasitic weeds in rice. Crop Protect 29:210–221CrossRefGoogle Scholar
  53. Rodenburg J, Cissoko M, Kayeke J, Dieng I, Khan ZR, Midega CA et al (2015) Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions? Field Crops Res 170:83–94CrossRefGoogle Scholar
  54. RStudio (2009) Version 1.0.136-©2009-2016 RStudio, IncGoogle Scholar
  55. Serghini K, de Luque AP, Castejón-Muñoz M, García-Torres L, Jorrín JV (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52:2227–2234CrossRefGoogle Scholar
  56. Singh B, Emechebe A (1990) Inheritance of Striga resistance in cowpea genotype B30. Crop Sci 30:879–881CrossRefGoogle Scholar
  57. Tippe DE, Rodenburg J, Schut M, van Ast A, Kayeke J, Bastiaans L (2017) Farmers’ knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems. Crop Protect 99:93–107CrossRefGoogle Scholar
  58. Van Ast A, Bastiaans L, Kropff M (2000) A comparative study on Striga hermonthica interaction with a sensitive and a tolerant sorghum cultivar. Weed Res 40:479–493CrossRefGoogle Scholar
  59. Yohannes T, Ngugi K, Ariga E, Ahonsi M, Yao N, Abraha T (2017) A diagnostic appraisal of sorghum farming in Striga endemic areas of Eritrea. J Agric Sci 9:133Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Edmore Gasura
    • 1
  • Peter Setimela
    • 2
    Email author
  • Stanford Mabasa
    • 1
  • Rwafa Rwafa
    • 1
  • Susan Kageler
    • 1
  • Cacious Nyakurwa
    • 1
  1. 1.Department of Crop ScienceUniversity of ZimbabweMt PleasantZimbabwe
  2. 2.Global Maize ProgramInternational Maize and Wheat Improvement Centre (CIMMYT)Mt PleasantZimbabwe

Personalised recommendations