Advertisement

Euphytica

, 215:139 | Cite as

Genome-wide SNP-based diversity analysis and association mapping in linseed (Linum usitatissimum L.)

  • Neha Singh
  • Neha Agarwal
  • Hemant Kumar YadavEmail author
Article
  • 11 Downloads

Abstract

The present study was aimed to characterize linseed accessions for genetic diversity, population structure and establish marker-trait association using SNP markers. A total of 10057 SNPs were identified in 86 accessions through genotyping by sequencing approach of next-generation sequencing. The polymorphism information content (PIC) value was found to be in the range from 0.08 to 0.30 with an average of 0.27 ± 0.09. Moderate value of PIC (0.30–0.60) was shown by 48% SNPs while remaining had low PIC values. Based on Jaccard’s similarity coefficient, the genetic distance varied from 0.17 to 0.65 with an average of 0.42 ± 0.07. Based on genetic relatedness among the accessions, CG 79, CG 86, GP 25, GP 31 GP 33, GP 47, and GP 49 were found to be most divergent and could be potential accessions for the future breeding program of linseed to create further genetic variability. The neighbor-joining clustering revealed that 86 genotypes were grouped into four clusters with 28, 8, 21 and 29 accessions respectively. An admixture model-based clustering method in STRUCTURE was also implemented which grouped all the accessions in four subpopulations (K = 4) as similar to NJ clustering. One pleiotropic SNPs was observed for capsule weight/plant and seed weight/plant which could assist in their simultaneous improvement during the breeding programme.

Keywords

Linseed GBS PIC Population structure 

Notes

Acknowledgements

Authors thank the Director, CSIR-NBRI, Lucknow for providing the facilities to carry out the present investigation.

Supplementary material

10681_2019_2462_MOESM1_ESM.pptx (212 kb)
Supplementary material 1 (PPTX 212 kb)

References

  1. Adugna W, Labuschagne MT, Viljoen CD (2006) The use of morphological and AFLP markers in diversity analysis of linseed. Biodivers Conserv 15:3193–3205CrossRefGoogle Scholar
  2. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081.  https://doi.org/10.1534/genetics.112.147710 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  4. Bibi T, Mustafa HSB, Ejaz-ul-Hasan Rauf S, Mahmood T, Ali Q (2015) Analysis of genetic diversity in linseed using molecular markers. Life Sci J 12(4s):28–37Google Scholar
  5. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331PubMedPubMedCentralGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL, software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  7. Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Wiley, New York, pp 11–86Google Scholar
  8. Brown AHD (1989) Core collections—a practical approach to genetic-resources management. Genome 31:818–824CrossRefGoogle Scholar
  9. Chandrawati, Yadav HK (2017) Development of linkage map and mapping of QTLs for oil content and yield attributes in linseed (Linum usitatissimum L.). Euphytica 213:258CrossRefGoogle Scholar
  10. Chandrawati, Maurya R, Singh PK, Ranade SA, Yadav HK (2014) Diversity analysis in Indian genotypes of linseed (Linum usitatissimum L.) using AFLP marker. Gene 549:171–178CrossRefGoogle Scholar
  11. Chandrawati, Singh N, Kumar R, Kumar S, Singh PK, Yadav VK, Ranade SA, Yadav HK (2017) Genetic diversity, population structure and association analysis in linseed (Linum usitatissimum L.). Physiol Mol Biol Plants 23(1):207–219CrossRefGoogle Scholar
  12. Charlton B, Ehrensing D (2001) Fiber and oilseed flax performance annual report. Oregon State University, CorvallisGoogle Scholar
  13. Chen W, Hou L, Zhang Z, Pang X, Li Y (2017) Genetic diversity, population structure and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by sequencing and SSR Markers. Front Plant Sci 8:575PubMedGoogle Scholar
  14. Cloutier S, Ragupathy R, Zhixia N, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451CrossRefGoogle Scholar
  15. Cui C, Mei H, Liu Y, Zhang H, Zhang Y (2017) Genetic diversity, population structure, and linkage disequilibrium of an association mapping panel revealed by genome wide SNP markers in sesame. Front Plant Sci 8:1189CrossRefGoogle Scholar
  16. Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evano method. Conserv Genet Resour 4:359–366CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  18. Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK et al (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69CrossRefGoogle Scholar
  19. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  20. Fu Y, Rowland GG, Duguid S, Richards KW (2003) RAPD analysis of 54 North American flax cultivars. Crop Sci 43(4):1510CrossRefGoogle Scholar
  21. Gapare W, Conaty W, Zhu Q, Liu S, Stiller W, Llewellyn D, Wilson I (2017) Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica 213:66CrossRefGoogle Scholar
  22. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9(2):e90346CrossRefGoogle Scholar
  23. Green AG (1986) Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet 72:654–661CrossRefGoogle Scholar
  24. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147CrossRefGoogle Scholar
  25. Iquira E, Humira S, François B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15:5CrossRefGoogle Scholar
  26. Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371CrossRefGoogle Scholar
  27. Knowler WC, Williams RC, Pettitt DJ, Steinberg AG (1988) Gm3;5, 13, 14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 43:520–526PubMedGoogle Scholar
  28. Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128:965–984CrossRefGoogle Scholar
  29. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  30. Liu Z, Li H, Wen Z, Fan X, Li Y, Guan R, Guo Y, Wang S, Wang D, Qiu L (2017) Comparison of genetic diversity between Chinease and American Soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Front Plant Sci 8:2014CrossRefGoogle Scholar
  31. Lu YL, Yan JB, Guimarães CT, Taba S, Hao ZF, Gao SB et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115CrossRefGoogle Scholar
  32. Mohlke KL, Lange EM, Valle TT, Ghosh S, Magnuson VL, Silander K, Watanabe RM, Chines PS, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2001) Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns. Genome Res 11:1221–1226CrossRefGoogle Scholar
  33. Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SA (2018) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2012CrossRefGoogle Scholar
  34. Owens B, Lipka A, Magallanes-Lundback M, Tiede T, Diepenbrock C, Kandianis C, Kim E, Cepela J, Mateos-Hernandez M, Buell C et al (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716CrossRefGoogle Scholar
  35. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield Scince Publishers, Montpellier, pp 43–76Google Scholar
  36. Peterson GW, Dong Y, Horbach C, Fu Y (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680CrossRefGoogle Scholar
  37. Pham DT, Bui MT, Werlemark G et al (2009) A study of genetic diversity of sesame (Sesamum indicum L.) in Vietnam and Cambodia estimated by RAPD markers. Genet Resour Crop Evol 56:679–690CrossRefGoogle Scholar
  38. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102CrossRefGoogle Scholar
  39. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  41. Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS (2010) Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol 45:161–170CrossRefGoogle Scholar
  42. Roose-Amsaleg C, Cariou Pham E, Vautrin D, Tavernier R, Solignac M (2006) Polymorphic microsatellite loci in Linum usitatissimum. Mol Ecol Notes 6:796–799CrossRefGoogle Scholar
  43. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379CrossRefGoogle Scholar
  44. Singh RK, Banerjee N, Khan MS, Yadav S, Kumar S, Duttamajumder SK, Lal RJ, Patel JD, Guo H, Zhang D, Paterso AH (2016) Identifcation of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol Genet Genomics 291(3):1363–1377CrossRefGoogle Scholar
  45. Soto-Cerda BJ, Maureira-Butler I, Munoz G, Rupayan A, Cloutier S (2011) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed 30:875–888CrossRefGoogle Scholar
  46. Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013a) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78CrossRefGoogle Scholar
  47. Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013b) Genetic characterization of a core collection of Flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78CrossRefGoogle Scholar
  48. Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896CrossRefGoogle Scholar
  49. Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM (2018) Genome wide association analysis of Mucilage and hull content in Flax (Linum usitatissimum L.) seeds. Int J Mol Sci 19(10):2870CrossRefGoogle Scholar
  50. Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383CrossRefGoogle Scholar
  51. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289CrossRefGoogle Scholar
  52. Vos PG, Joao Paulo M, Vorrips RE, Visser RGF et al (2017) Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet 130:123–135CrossRefGoogle Scholar
  53. Weddell BJ (2002) Conserving living natural resources: in the context of a changing world. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska K, Deomano E (2010) Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane. Genome 53:973–981CrossRefGoogle Scholar
  55. Xie D, Dai Z, Yang Z, Tang Q, Sun J, Yang X, Song X, Lu Y, Zhao D, Zhang L, Su J (2018) Genomic variations and association study of agronomic traits in flax. BMC Genomics 19:512CrossRefGoogle Scholar
  56. Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449CrossRefGoogle Scholar
  57. Yu J, Pressoir G, Briggs WH, Bi Vroh, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefGoogle Scholar
  58. Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X (2018) Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC Plant Biol 18(1):160CrossRefGoogle Scholar
  59. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Neha Singh
    • 1
  • Neha Agarwal
    • 1
    • 2
  • Hemant Kumar Yadav
    • 1
    • 2
    Email author
  1. 1.CSIR-National Botanical Research InstituteLucknowIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations