Advertisement

Euphytica

, 215:107 | Cite as

QTL analysis related to the flag-leaf angle related with it gene in rice (Oryza sativa L.)

  • Jeong-Gwan Ham
  • Hak Yoon Kim
  • Kyung-Min KimEmail author
Article
  • 60 Downloads

Abstract

In this study, quantitative trait loci (QTLs) for flag leaf angle and other traits were identified using rice double haploid population (DH population) derived from Cheongcheong × Nagdong. A total of 9 QTLs were identified for the four traits located on three different chromosomes of rice and analysis of interaction among the QTLs revealed additive effect for the leaf angle and epistatic main effect for decreasing flag-leaf angle. When a physical map was generated based on the detected QTLs, nine genes for qFA4, two genes for qFA11, seven genes for qPE3, and six genes for qCC11 were identified. These results provide a foundation for the functional characterization of the gene underlying the pleiotropic effects of qFA4 and for genetic improvement of the plant architecture and yield potential of rice.

Keywords

Flag-leaf Genotypes Phenotypes QTL Rice Yield 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2017R1D1A3B04028676).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Supplementary material

10681_2019_2434_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1484 kb)

References

  1. Berke TG, Baenziger PS, Morris R (1992) Chromosomal location of wheat quantitative trait loci affecting agronomic performance of seven traits, using reciprocal chromosome substitutions. Crop Sci 32(3):621–627CrossRefGoogle Scholar
  2. Bing Y, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33(9):824–832CrossRefGoogle Scholar
  3. Bruno E, Choi YS, Chung IK, Kim KM (2017) QTLs and analysis of the candidate gene for amylose, protein, and moisture content in rice (Oryza sativa L.). 3 Biotech 7:40CrossRefGoogle Scholar
  4. Cai J, Zhang M, Guo LB, Li XM, Bao JS, Ma LY (2015) QTLs for rice flag leaf traits in doubled haploid populations in different environments. Genet Mol Res 14(2):6786–6795CrossRefGoogle Scholar
  5. Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43(4):1493–1505CrossRefGoogle Scholar
  6. Cao G, Zhu J (2006) QTLs for flag leaf area of rice under multi environments. Life Sci 3(2):79–82Google Scholar
  7. Chen Q, Xie Q, Gao J, Wang W, Sun B, Liu B, Zhu H, Peng H, Zhao H, Liu C, Wang J, Zhang J, Zhang G, Zhang Z (2015) Characterization of rolled and erect leaf 1 in regulating leave morphology in rice. J Exp Bot 66(19):6047–6058CrossRefGoogle Scholar
  8. Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF (2011) Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. J Exp Bot 62(1):167–176CrossRefGoogle Scholar
  9. Fan G, Dong Y, Wang C, Wan J, Xie H, Xu C, Zhu J, Cai Q (2007) Analysis of QTLs for flag leaf shape and its response to elevated CO2 in rice (Oryza sativa). Rice Sci 14(1):7–12CrossRefGoogle Scholar
  10. Fasoulas AC, Allard RW (1962) Nonallelic gene interactions in the inheritance of quantitative characters in barley. Genetics 47(7):899–907PubMedPubMedCentralGoogle Scholar
  11. Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X, Zhang X, Wu F, Terzaghi W, Kim SK, Jiang L, Wan J (2016) SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot 67(14):4241–4253CrossRefGoogle Scholar
  12. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88CrossRefGoogle Scholar
  13. Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun B (2016) Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front Plant Sci 7:975PubMedPubMedCentralGoogle Scholar
  14. Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083–1090CrossRefGoogle Scholar
  15. Jang S, An G, Li HY (2017) Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol 173:688–702CrossRefGoogle Scholar
  16. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369CrossRefGoogle Scholar
  17. Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80:137–142CrossRefGoogle Scholar
  18. Khush GS (1997) Oryza: from molecule to plant. In: Sasaki T, Moore G (eds) Origin, dispersal, cultivation and variation of rice. Springer, Dordrecht, pp 25–34Google Scholar
  19. Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breed Sci 53(3):255–262CrossRefGoogle Scholar
  20. Konaté AK, Zongo A, Sangaré JR, Kam H, Hema D, Sanni A, Audebert A (2016) Genetic analysis and QTL mapping of agro-morphological traits in lowland rice (Oryza sativa L.) under drought conditions. Int J Curr Adv Res 5(9):1260–1267Google Scholar
  21. Lee SJ, Oh CS, Suh JP, McCouch SR, Ahn SN (2005) Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breed 124(3):209–219CrossRefGoogle Scholar
  22. Li Z, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109(2):79–84CrossRefGoogle Scholar
  23. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report 78-79Google Scholar
  24. McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11(2):482–487CrossRefGoogle Scholar
  25. Nagata K, Fukuta Y, Shimizu H, Yagi T, Terao T (2002) Quantitative trait loci for sink size and ripening traits in rice (Oryza sativa L.). Breed Sci 52(4):259–273CrossRefGoogle Scholar
  26. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335(6192):721–726CrossRefGoogle Scholar
  27. Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crops Res 108(1):32–38CrossRefGoogle Scholar
  28. Prior FA, Tackaberry ES, Aubin RA, Casley WL (2006) Accurate determination of zygosity in transgenic rice by real-time PCR does not require standard curves or efficiency correction. Transgenic Res 15(2):261–265CrossRefGoogle Scholar
  29. Rahman ML, Chu SH, Choi M, Li QY, Jiang W, Piao R, Khanam S, Cho Y, Jeung J, Jena KK (2007) Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta. Mol Cells 24(1):16–26PubMedGoogle Scholar
  30. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tananka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109CrossRefGoogle Scholar
  31. Sasaki T (2001) The progress in rice genomics. Euphytica 118(2):103–111CrossRefGoogle Scholar
  32. Simón MR (1999) Inheritance of flag-leaf angle, flag-leaf area and flag-leaf area duration in four wheat crosses. Theor Appl Genet 98(2):310–314CrossRefGoogle Scholar
  33. Sonah H, Deshmukh R, Chand S, Srinivasprasad M, Rao G, Upreti H, Singh A, Singh N, Sharma T (2012) Molecular mapping of quantitative trait loci for flag leaf length and other agronomic traits in rice (Oryza sativa). Cereal Res Commun 40(3):362–372CrossRefGoogle Scholar
  34. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescent transient as a tool to characterize and screen photosynthetic samples. In Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483Google Scholar
  35. Tang JJ, Xin C, Shimizu K (2002) Varietal differences in photosynthetic characters and chlorophyll fluorescence induction kinetics parameters among intergeneric progeny derived from Oryza × Sorghum, its parents, and hybrid rice. J Zhejiang Univ Sci A 3(1):113–117CrossRefGoogle Scholar
  36. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493CrossRefGoogle Scholar
  37. Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135(3):255–263CrossRefGoogle Scholar
  38. Wang HL, Wan XY, Bi JC, Wang JK, Jiang L, Chen LM, Zhai HQ, Wan JM (2006) Quantitative analysis of fat content in rice by near-infrared spectroscopy technique. Cereal Chem 83(4):402–406CrossRefGoogle Scholar
  39. Wang P, Zhou G, Yu H, Yu S (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet 123(8):1319–1330CrossRefGoogle Scholar
  40. Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, Zhang D, Ouyang S, Wang Z, Li D, Wang G, Zhang D, Yuan C, Wang L, You M, Han J, Liu Z (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208(2):337–351CrossRefGoogle Scholar
  41. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468PubMedPubMedCentralGoogle Scholar
  42. Zeng D, Hu J, Dong G, Liu J, Zeng L, Zhang G, Guo L, Zhou Y, Qian Q (2009) Quantitative trait loci mapping of flag-leaf ligule length in rice and alignment with ZmLG1 gene. J Integr Plant Biol 51(4):360–366CrossRefGoogle Scholar
  43. Zhang ZH, Li P, Wang LX, Hu ZL, Zhu LH, Zhu YG (2004) Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci 167(1):1–8CrossRefGoogle Scholar
  44. Zhang Y, Tang L, Liu X, Liu L, Cao W, Zhu Y (2017) Modeling the leaf angle dynamics in rice plant. PLoS ONE 12(2):e0171890CrossRefGoogle Scholar
  45. Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res 20(8):935–947CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Applied Biosciences, College of Agriculture and Life ScienceKyungpook National UniversityDaeguKorea
  2. 2.Department of Global EnvironmentKeimyung UniversityDaeguKorea

Personalised recommendations