Advertisement

Euphytica

, 215:106 | Cite as

Variation in yield over time in a cacao factorial mating design: changes in heritability and longitudinal data analyses over 13 consecutive years

  • Mathias Tahi
  • Caudou Trebissou
  • Fabienne Ribeyre
  • Boguinard Sahin Guiraud
  • Désiré N’ da Pokou
  • Christian CilasEmail author
Article

Abstract

The production period for perennial crops is often indeterminate. For cacao, the production period can last between 15 and 70 years. The implication for breeding is not easy. How many years of production are needed to propose new varieties? How are the production levels of several years linked at tree level? How is it possible to model series of production data over time? To answer these questions, data were analyzed from 13 years’ production in a cacao factorial mating design. Genetic analyses of the number of healthy pods produced per year and per tree revealed that the inheritance of the trait is mainly additive, especially in the first 8 years of production; after this first period, a dominance effect appeared. Yield increased in the first 6 years, then decreased over time. The first major production (4th year) was a good predictor of cumulative yield, with a genetic correlation of 0.98. However, the shape of the yield trajectories varied depending on the families. Longitudinal data analyses were carried out to gain a clearer understanding of the link between the yields of successive years. When considering all 13 years, the best fit model was the antedependence model; this model indicated that the correlation between 2 successive years was stable, and the correlation between years decreased as the gap between years increased. When the first 3 years were not taken into account, the best fit model was a Compound Symmetry model, which indicated a large tree effect over time.

Keywords

Breeding methods Fruit production Genetic correlations Mixed model Repeated data analyses Theobroma cacao 

Notes

Acknowledgements

We should like to thank the organizations associated with this study, notably the Centre National de Recherche Agronomique (CNRA) in Côte d’Ivoire and Peter Biggins for reviewing the English version.

References

  1. Almeida AA, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19:425–448CrossRefGoogle Scholar
  2. Alves RS, de Azevedo Peixoto L, Teodoro PE, Silva LA, Rodrigues EV, de Resende MDV, Laviola BG, Bhering LL (2018) Selection of Jatropha curcas families based on temporal stability and adaptability of genetic values. Ind Crops Prod 119:290–293CrossRefGoogle Scholar
  3. Baradat P and Labbé T 1995 OPEP (Diogene). Un logiciel intégré pour l’amélioration des plantes pérennes. In: Traitements statistiques des essais de sélection (CIRAD-CP) 303–330Google Scholar
  4. Baudouin L, Baril C, Clément-Demange A, Leroy T, Paulin D (1997) Recurrent selection of tropical tree crops. Euphytica 96:101–114CrossRefGoogle Scholar
  5. Bouvet JM, Saya A, Vigneron PH (2009) Trends in additive, dominance and environmental effects with age for growth traits in Eucalyptus hybrid populations. Euphytica 165:35–54CrossRefGoogle Scholar
  6. Brun LA, Sounigo O, Coulibaly N, Cilas C (1997) Methods of analysis for studying cocoa (Theobroma cacao L.) susceptibility to mirids. Euphytica 94:349–359CrossRefGoogle Scholar
  7. Cilas C, Bouharmont P, Bar-Hen A (2003) Yield stability in Coffea canephora from diallel mating designs monitored for 14 years. Heredity 91:528–532CrossRefGoogle Scholar
  8. Cilas C, Machado R, Motamayor JC (2010) Relations between several traits linked to sexual plant reproduction in Theobroma cacao L.: number of ovules per ovary, number of seeds per pod, and seed weight. Tree Genet Genomes 6:219–226CrossRefGoogle Scholar
  9. Cilas C, Montagnon C, Bar-Hen A (2011) Yield stability in clones of Coffea canephora in the short and medium term: longitudinal data analyses and measures of stability over time. Tree Genet Genomes 7:421–429CrossRefGoogle Scholar
  10. Clément D, Eskes A, Sounigo O, N’goran J (1993) Amélioration génétique du cacaoyer en Côte d’Ivoire. In: Présentation d’un nouveau schéma de sélection. 11ème Conférence Internationale sur la Recherche Cacaoyère, Yamoussoukro (Côte d’Ivoire), pp 451–455Google Scholar
  11. dos Santos Dias LA, Kageyama PY (1998) Repeatability and minimum harvest period of cacao (Theobroma cacao L.) in Southern Bahia. Euphytica 102:29–35CrossRefGoogle Scholar
  12. Euler FV, Baradat P, Lemoine B (1992) Effects of plantation density and spacing on competitive interactions among half-sib families of maritime pine. Can J For Res 22:482–489CrossRefGoogle Scholar
  13. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and significance. Crop Sci 39:1544–1551CrossRefGoogle Scholar
  14. Falconer DS (1974) Introduction à la génétique quantitative. Masson, Paris, 284pGoogle Scholar
  15. Genolini C, Falissard B (2011) KmL: a package to cluster longitudinal data. Comput Methods Programs Biomed 104:112–121CrossRefGoogle Scholar
  16. Genolini C, Alacoque X, Sentenac M, Arnaud C (2015) kml and kml3d: R Packages to Cluster Longitudinal Data. J Stat Softw 65:1–34CrossRefGoogle Scholar
  17. Glynn D (2014) Correspondence analysis: exploring data and identifying patterns. In: Glynn D, Robinson J (eds) Corpus methods for semantics: quantitative studies in polysemy and synonymy. John Benjamins Publishing Company, Amsterdam, pp 443–485CrossRefGoogle Scholar
  18. Gwaze DP, Bridgwater FE, Williams CG (2002) Genetic analysis of growth curves for woody perennial species, Pinus taeda L. Theor Appl Genet 105:526–531CrossRefGoogle Scholar
  19. Jaffrézic F, Thompson R, Hill WG (2003) Structured antedependence models for genetic analysis of repeated measures on multiple quantitative traits. Genet Res 82:55–65CrossRefGoogle Scholar
  20. Kassambara A, Mundt F (2017) factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. https://CRAN.R-project.org/package=factoextra
  21. Lachenaud P, Montagnon C (2002) Competition effects in cocoa (Theobroma cacao L.) hybrid trials. Euphytica 128:97–104CrossRefGoogle Scholar
  22. Lachenaud P, Eskes A, N’Goran JAK, Clément D, Kébé I, Tahi M, Cilas C (2001) Premier cycle de sélection récurrente en Côte d’Ivoire et choix des géniteurs du second cycle. In Proceedings of the 13th international cocoa research conference 9–14, Sabah, Malaysia. Cocoa Producers’ Alliance, LagosGoogle Scholar
  23. Le S, Josse J, Husson F (2008) FactoMineR: an R Package for Multivariate Analysis. J Stat Softw 25:1–18CrossRefGoogle Scholar
  24. Lebart L, Morineau A, Pitron M (1995) Statistique exploratoire multidimensionnelle. Dunod Editeur, ParisGoogle Scholar
  25. McFadyen LM, Robertson D, Sedgley M, Kristiansen P, Olesen T (2011) Post-pruning shoot growth increases fruit abscission and reduces stem carbohydrates and yield in macadamia. Ann Bot 107:993–1001CrossRefGoogle Scholar
  26. Montagnon C, Flori A, Cilas C (2001) A new method to assess competition in coffee clonal trials with single-tree plots in Côte d’Ivoire. Agron J 93:227–231CrossRefGoogle Scholar
  27. Mustiga GM, Gezan SA, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Motamayor JC (2018) Phenotypic description of Theobroma cacao L. for yield and vigor traits from 34 hybrid families in Costa Rica based on the genetic basis of the parental population. Frontiers in plant science 9Google Scholar
  28. Ndoumbé M, Bieysse D, Cilas C (2001) Multi-trait selection in a diallel crossing scheme of cocoa. Plant Breeding 120:365–367CrossRefGoogle Scholar
  29. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  30. Reddy YTN, Kurian RM, Ramachander PR, Singh G, Kohli RR (2002) Long-term effects of rootstocks on growth and fruit yielding patterns of “Alphonso” mango (Mangifera indica L.). Sci Hortic 97:95–108CrossRefGoogle Scholar
  31. Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295(5562):2019–2020CrossRefGoogle Scholar
  32. SAS Institute Inc. (2011) Base SAS® 9.3 Procedures Guide. Cary, NC: SAS Institute IncGoogle Scholar
  33. Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer, NewYork, p 516CrossRefGoogle Scholar
  34. Silva GAP, Gouvêa LRL, Verardi CK, de Oliveira ALB, de Souza Gonçalves P (2014) Annual growth increment and stability of rubber yield in the tapping phase in rubber tree clones: implications for early selection. Ind Crops Prod 52:801–808CrossRefGoogle Scholar
  35. Sounigo O, Coulibaly N, Brun L, N’Goran J, Cilas C, Eskes AB (2003) Evaluation of resistance of Theobroma cacao L. to mirids in Côte d’Ivoire: results of comparative progeny trials. Crop protection 22:615–621CrossRefGoogle Scholar
  36. Tahi GM, Lachenaud P, N’Goran JAK, Kébé IS, Paulin D, N’Guessan KF, Cilas C, Eskes A (2010) Second cycle de sélection récurrente du cacaoyer (Theobroma cacao L.) en Côte d’Ivoire: bilan à mi-parcours et propositions de sorties variétales. In: 16th International Cocoa Research Conference. Proceedings: towards rational cocoa production and efficient use ofr a sustainable world cocoa economy. Lagos: Cocoa Producers’ Alliance, pp 3–12. International Conference on Cocoa Research. 16, 2009-11-16/2009-11-21, Bali (Indonesia)Google Scholar
  37. Valle RR, De Almeida AA, De O Leite RM (1990) Energy costs of flowering, fruiting, and cherelle wilt in cacao. Tree Physiol 6:329–336CrossRefGoogle Scholar
  38. Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Verlag, New YorkGoogle Scholar
  39. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  40. Zamudio F, Wolfinger R, Stanton B, Guerra F (2008) The use of linear mixed model theory for the genetic analysis of repeated measures from clonal tests of forest trees. I. A focus on spatially repeated data. Tree Genet Genomes 4:299–313CrossRefGoogle Scholar
  41. Zimmerman DL, Núñez-Antón V (1997) Structured antedependence models for longitudinal data. In: Gregoire TG, Brillinger DR, Diggle P, Russek-Cohen E, Warren WG, Wolfinger RD (eds) Modelling longitudinal and spatially correlated data. Springer, New York, pp 63–76CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mathias Tahi
    • 1
  • Caudou Trebissou
    • 1
  • Fabienne Ribeyre
    • 2
  • Boguinard Sahin Guiraud
    • 1
  • Désiré N’ da Pokou
    • 1
  • Christian Cilas
    • 2
    Email author
  1. 1.CNRADivoIvory Coast
  2. 2.CIRAD, UR Bioagresseurs, Univ MontpellierMontpellierFrance

Personalised recommendations