Advertisement

Euphytica

, 215:110 | Cite as

Quantitative trait locus mapping for plant height and branch number in an upland cotton recombinant inbred line with an SNP-based high-density genetic map

  • Zhen Zhang
  • Aiying Liu
  • Zhen Huang
  • Senmiao Fan
  • Xianyan Zou
  • Xiaoying Deng
  • Qun Ge
  • Juwu Gong
  • Junwen Li
  • Wankui Gong
  • Yuzhen Shi
  • Liqiang Fan
  • Zhibin Zhang
  • Xiao Jiang
  • Kang Lei
  • Youlu YuanEmail author
  • Aixia XuEmail author
  • Haihong ShangEmail author
Article
  • 55 Downloads

Abstract

Cotton is one of the most important cash crops around the world, providing natural fiber for the textile industry. Agronomic traits play an important role in the mechanized harvesting of cotton. Plant height (PH) and branch number (BN) are two important traits that could affect plant architecture and ultimately, economic yield of cotton. The quantitative trait locus (QTL) for PH and BN across seven environments was identified with a high-density single nucleotide polymorphism map constructed using recombinant inbred lines from upland cotton 0–153 and sGK9708. A total of 68 QTLs for PH (nine stable) and 64 QTLs for BN (eight stable) were identified. Among these stable QTLs, three (two for PH and one for BN) have been identified in previous studies. Four hundred genes for PH and 624 genes for BN were located on the confidence intervals of these stable QTLs. Among them, 134 for PH and 224 for BN were expressed in at least one tissue of root, stem and leaf. Based on the annotation information, expression pattern and the function validated on the other species, ten genes (six for PH and four for BN) could be considered as potential candidate genes. These results could contribute to understanding the mechanism of PH and branch formation, and to improving the method of cotton breeding for molecular marker-assisted selection.

Keywords

Upland cotton Plant height Branch number Quantitative trait locus Potential candidate gene 

Notes

Acknowledgements

This work was funded by The Natural Science Foundation of China (31471538, and 31371668) and the central level of the scientific research institutes for basic R & D special fund business (161012018017). We thank Elizabeth Martell, MSc, from LiwenBianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2428_MOESM1_ESM.tif (480 kb)
Supplementary material 1 (TIFF 480 kb)
10681_2019_2428_MOESM2_ESM.tif (391 kb)
Supplementary material 2 (TIFF 391 kb)
10681_2019_2428_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 10 kb)
10681_2019_2428_MOESM4_ESM.xlsx (23 kb)
Supplementary material 4 (XLSX 23 kb)
10681_2019_2428_MOESM5_ESM.xlsx (48 kb)
Supplementary material 5 (XLSX 47 kb)
10681_2019_2428_MOESM6_ESM.xlsx (158 kb)
Supplementary material 6 (XLSX 157 kb)
10681_2019_2428_MOESM7_ESM.xlsx (21 kb)
Supplementary material 7 (XLSX 20 kb)
10681_2019_2428_MOESM8_ESM.xlsx (24 kb)
Supplementary material 8 (XLSX 23 kb)
10681_2019_2428_MOESM9_ESM.xlsx (58 kb)
Supplementary material 9 (XLSX 57 kb)

References

  1. Adawy SS, Diab AA, Atia MA, Hussein EH (2013) Construction of genetic linkage map with chromosomal assignment and quantitative trait loci associated with some important agronomic traits in cotton. GM Crops Food 4:36–49CrossRefGoogle Scholar
  2. Bai JY, Yang YB, Huang Y, Qi YX, Li GL (2016) The effects of traits heritability on the efficiency of marker assisted introgression. Jiangsu Agric Sci 44:35–37Google Scholar
  3. Bajaj D, Upadhyaya HD, Das S, Kumar B, Gowda CLL, Sharma S, Tyagi AK, Sk Parida (2016) Identification of candidate genes for dissecting complex branch number trait in chickpea. Plant Sci 245:61–70CrossRefGoogle Scholar
  4. Cai YH, Chen XJ, Xie K, Xing QK, Wu YW, Li J, Du CH, Sun ZX, Guo ZJ (2014) Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS ONE 9:e102529CrossRefGoogle Scholar
  5. Chen W, Yao JB, Li Y, Zhao LJ, Liu J, Guo Y, Wang JY, Li Y, Liu ZY, Lu YJ, Zhang YS (2019) Nulliplex-branch, a TERMINAL FLOWER 1 ortholog controls plant growth habit in cotton. Theor Appl Genet 132:97–112CrossRefGoogle Scholar
  6. Davie`re J, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24:1923–1928CrossRefGoogle Scholar
  7. Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu JX (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in upland cotton (Gossypium hirsutum L.). BMC Genom 15:397CrossRefGoogle Scholar
  8. Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517PubMedGoogle Scholar
  9. Gu LJ, Wei HL, Wang HT, Su JJ, Yu SX (2018) Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genet 19:48CrossRefGoogle Scholar
  10. Guo X, Guo YP, Ma J, Wang F, Sun MZ, Gui LJ, Zhou JJ, Song XL, Sun XZ, Zhang TZ (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55:759–774CrossRefGoogle Scholar
  11. He R, Shi YZ, Zhang JF, Liang Y, Zhang BC, Li JW, Wang T, Gong JW, Liu AY, Shang HH, Gong WK, Bai AC, Yuan YL (2014) QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin 40:457–465CrossRefGoogle Scholar
  12. Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, FeldmanL J, Yanofsky MF (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124:3845–3853PubMedGoogle Scholar
  13. Hulsse-Kemp AM, Lemm J, Plieske J, Ashra H, Burrarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze L, Kochan KJ, Riggs PK, Schef JA, Udall JA, Ulloa M, Wang SS, Zhu QH, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore M, Harker DB, Lslam MS, Jenkins JN, Jones DC, Lacape JM, Liewellyn DJ, Percy RG, Pepper AE, Poland JA, Rai KM, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zhang XT, Lawley CT, Ganal MW, Deynze AV, Wilson IW, Stelly DM (2015) Development of a 63 K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genomes Genet 5:1187–1209Google Scholar
  14. Jamshed M, Jia F, Gong JW, Plalanga KK, Shi ZY, Li JW, Shang HH, Liu AY, Chen TT, Zhang Z, Cai J, Ge Q, Liu Z, Lu QW, Deng XY, Tan YN, Rashid HO, Sarfrza Z, Hassan M, Gong WK, Yuan YL (2016) Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genom 17:197CrossRefGoogle Scholar
  15. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36CrossRefGoogle Scholar
  16. Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C (2009) A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292CrossRefGoogle Scholar
  17. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  18. Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefGoogle Scholar
  19. Li FG, Fang GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015a) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530CrossRefGoogle Scholar
  20. Li SS, Wang JK, Zhang LY (2015b) Inclusive composite interval mapping of QTL by environment interactions in biparental population. PLoS ONE 10:132414Google Scholar
  21. Li C, Dong YT, Zhao TL, Li C, Yu E, Mei L, Daud MK, He QL, Chen JH, Zhu SJ (2016) Genome-wide SNP linkage mapping and QTL analysis for fiber 1uality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:1356PubMedPubMedCentralGoogle Scholar
  22. Ma LL, Ijaz B, Wang YM, Hua JP (2018) Dynamic QTL analysis and validation for plant height using maternal and paternal backcrossing populations in Upland cotton. Euphytica 214:167CrossRefGoogle Scholar
  23. Martı´n-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39CrossRefGoogle Scholar
  24. Mei Y, Yu J, Xue A, Fan S, Song M, Pang C, Pei W, Yu S, Zhu J, Zhang J (2017) Dissecting genetic network of fruit branch traits in upland cotton by association mapping using SSR markers. PLoS ONE 12(1):e0162815CrossRefGoogle Scholar
  25. Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283CrossRefGoogle Scholar
  26. Park YH, Alabady MS, Ulloa M, Sickler B, Wilkin TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genom 274:428–441CrossRefGoogle Scholar
  27. Qi HK, Wang N, Qiao WQ, Xu QH, Zhou H, Shi JB, Yan GT, Huang Q (2017) Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Euphytica 213:83CrossRefGoogle Scholar
  28. Rong JK, Abbey C, Browers JE, Brubaker CL, Cheng C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park CH, Pierce GJ, Rain KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417CrossRefGoogle Scholar
  29. Rong JK, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Graye X, Sarange Y, Wright RJ, Wilkins TA, May L, Smith W, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of sub genomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588CrossRefGoogle Scholar
  30. Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776CrossRefGoogle Scholar
  31. Said JI, Knapka JA, Song MZ, Zhang JF (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1615–1625CrossRefGoogle Scholar
  32. Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, Zhang JF (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1003–1025CrossRefGoogle Scholar
  33. Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511CrossRefGoogle Scholar
  34. Shang LG, Liu F, Wang YM, Abduweli A, Cai SH, Wang KB, Hua JP (2015) Dynamic QTL mapping for plant height in upland cotton (Gossypium hirsutum). Plant Breed 134:703–712CrossRefGoogle Scholar
  35. Shang LG, Ma LL, Wang YM, Su Y, Wang XC, Li YH, Abduweli A, CaiSH Liu F, Wang KB, Hua JP (2016) Main effect QTL with dominance determines heterosis for dynamic plant height in upland cotton. G3: genes. Genome Genet 6:3373–3379Google Scholar
  36. Shen GJ, Zhan W, Chen HX, Xing YZ (2014) Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci 215–216:11–19CrossRefGoogle Scholar
  37. Song SS, Qi TC, Huang H, Ren QC, Wu DW, Chang CQ, Peng W, Liu YL, Peng JR, Xie DX (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013CrossRefGoogle Scholar
  38. Su JJ, Li LB, Zhang C, Wang CX, Gu LJ, Wang HT, Wei HL, Liu QB, Huang L, Yu SX (2018) Genome-wide association study identified genetic variation sand candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131:1299–1314CrossRefGoogle Scholar
  39. Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582CrossRefGoogle Scholar
  40. Tan ZY, Zhang ZQ, Sun XJ, Li QQ, Sun Y, Yang P, Wang WW, Liu XY, Chen CL, Liu DX, Teng ZH, Guo K, Zhang J, Liu DJ, Zhang ZS (2018) Genetic map construction and fiber 1uality QTL mapping using the cottonSNP80 K array in upland cotton. Front Plant Sci 9:225CrossRefGoogle Scholar
  41. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
  42. Wang S, Basten CJ, Zeng ZB (2001) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 1 Feb 2013
  43. Wang HT, Jin X, Zhang BB, Shen C, Li ZX- (2015a) Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing. DNA Res 22:147–160CrossRefGoogle Scholar
  44. Wang YK, Ning ZY, Hu Y, Chen JD, Zhao R, Chen H, Ai NJ, Guo WZ, Zhang TZ (2015b) Molecular mapping of restriction-site associated DNA markers in allotetraploid upland cotton. PLoS ONE 10:e0124781CrossRefGoogle Scholar
  45. Wang CT, Wang XZ, Wu Q, Wang ZW, Tang YY, Du ZB, Liu F, Li Q (2018) Sensory quality of fresh green peanuts: dominance analysis, selection of elite lines and heritability. J Peanut Sci 47:71–74Google Scholar
  46. Wu YZ, Fu TC, Zhao SS, Gu P, Zhu ZF, Sun CQ, Tan LB (2016) CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls architecture and seed size in rice. Plant Biotechnol J 1:377–386CrossRefGoogle Scholar
  47. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong J, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322CrossRefGoogle Scholar
  48. Yang ZR, Zhang CJ, Yang XJ, Liu K, Wu ZX, Zhang XY, Zheng W, Xun QQ, Liu CL, Lu LL, Yang ZE, Qian YY, Xu ZZ, Li CF, Li J, Li FG (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203:437–448CrossRefGoogle Scholar
  49. Yang H, Xue Q, Zhang ZZ, Du JY, Yu DY, Huang F (2018) GmMYB181, a Soybean R2R3-MYB protein, increases branch number in transgenic Arabidopsis. Front Plant Sci 9:1027CrossRefGoogle Scholar
  50. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  51. Zhang TZ, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015a) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides are source for fiber improvement. Nat Biotechnol 33:531–537CrossRefGoogle Scholar
  52. Zhang Z, Li JW, Muhammad J, Cai J, Jia F, Shi YZ, Gong JW, Shang HH, Liu AY, Chen TT, Ge Q, Palanga KK, Lu QW, Deng XY, Tan YN, Li W, Sun LY, Gong WK, Yuan YL (2015b) High resolution consensus mapping of quantitative trait loci for fiber strength, length and micronaire on chromosome 25 of the upland cotton (Gossypium hirsutum L.). PLoS ONE 10(8):e0135430CrossRefGoogle Scholar
  53. Zhang Z, Shang HH, Shi YZ, Huang L, Li JW, Ge Q, Gong JW, Liu AY, Chen TT, Wang D, Wang YL, Palanga KK, Muhammad J, Li WJ, Lu QW, Deng XY, Tan YN, Song WW, Cai J, Li PT, Rashid H, Gong WK, Yuan YL (2016) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum). BMC Plant Biol 16:79CrossRefGoogle Scholar
  54. Zhang Z, Ge Q, Liu AY, Li JW, Gong JW, Shang HH, Shi YZ, Chen TT, Wang YL, Palanga KK, Muhammad J, Lu QW, Deng XY, Tan YN, Liu RX, Zou XY, Rashid H, Iqbal MS, Gong WK, Yuan YL (2017) Construction of a high-density genetic map and its application to QTL identification for fiber strength in upland cotton. Crop Sci 57:774–788CrossRefGoogle Scholar
  55. Zhang Z, Zou X, Huang Z, Fan S, Qun G, Liu A, Gong J, Li J, Gong W, Shi Y, Fan L, Zhang Z, Liu R, Jiang X, Lei K, Shang H, Xu A, Yuan Y (2019) Genome-wide identification and analysis of the evolution and expression patterns of the GATA transcription factors in three species of Gossypium genus. Gene 680:72–83CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zhen Zhang
    • 1
    • 2
  • Aiying Liu
    • 1
  • Zhen Huang
    • 2
  • Senmiao Fan
    • 1
  • Xianyan Zou
    • 1
  • Xiaoying Deng
    • 1
  • Qun Ge
    • 1
  • Juwu Gong
    • 1
  • Junwen Li
    • 1
  • Wankui Gong
    • 1
  • Yuzhen Shi
    • 1
  • Liqiang Fan
    • 1
  • Zhibin Zhang
    • 1
  • Xiao Jiang
    • 1
  • Kang Lei
    • 1
  • Youlu Yuan
    • 1
    • 3
    Email author
  • Aixia Xu
    • 2
    Email author
  • Haihong Shang
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
  2. 2.State Key Laboratory of Crop Stress Biology for Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
  3. 3.Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina

Personalised recommendations