, 215:75 | Cite as

Wild barley shows a wider diversity in genes regulating heading date compared with cultivated barley

  • Hongliang Hu
  • Ibrahim Ahmed
  • Shormin Choudhury
  • Yun Fan
  • Sergey Shabala
  • Guoping Zhang
  • Matthew Harrison
  • Holger Meinke
  • Meixue ZhouEmail author


Heading date (HD) is an important agronomic trait that influences plant adaptability to varying environment and, ultimately, grain yield. In this study, two doubled haploid (DH) populations were used to identify new QTL for HD. One of the DH populations is originated from a cross between an Australian malting barley cv. Franklin and a wild barley accession TAM407227 and the other one is from the cross between a Syrian wild barley SYR01 and an Australian malting barley cv. Gairdner. Using three times of sowing (TOS) differing in daylength and temperature, we investigated quantitative trait loci (QTL) controlling HD from both populations. Fourteen QTL were identified for HD from different populations and sowing dates. The expression of HD related genes varied with the TOS, suggesting a significant QTL × environment interaction. By comparing the positions of previously mapped HD genes and those of QTL detected in this population, we found that eleven of the fourteen QTL identified in this study were located at similar positions to those reported genes for HD. Among the three new potential QTL, one was located at 73.5 cM on chromosome 2H, explaining 19.2% and 4.6% HD of DH lines in spring and summer growing, respectively. The wild barley parent TAM407227 contributed the early maturity allele. HORVU2Hr1G088460 within the interval of QTL could be the candidate gene. The second new QTL was identified on chromosome 3H from a summer sowing trial and the third one on chromosome 4H affected HD of DH lines only under spring sowing condition. These new QTL identified will provide alternative genetic resources for plant breeders developing barley varieties with improved HD adaptability to varying environments.


Barley Heading date Quantitative trait locus 



The present study is funded by the Grains Research and Development Corporation (GRDC) of Australia (UT00030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2019_2398_MOESM1_ESM.pptx (45 kb)
Supplementary material 1 (PPTX 46 kb)
10681_2019_2398_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 17 kb)
10681_2019_2398_MOESM3_ESM.pptx (862 kb)
Supplementary material 3 (PPTX 862 kb)
10681_2019_2398_MOESM4_ESM.docx (26 kb)
Supplementary material 4 (DOCX 26 kb)
10681_2019_2398_MOESM5_ESM.xlsx (21 kb)
Supplementary material 5 (XLSX 21 kb)
10681_2019_2398_MOESM6_ESM.xlsx (31 kb)
Supplementary material 6 (XLSX 31 kb)
10681_2019_2398_MOESM7_ESM.xlsx (55 kb)
Supplementary material 7 (XLSX 56 kb)


  1. Alqudah AM, Schnurbusch T (2017) Heading date is not flowering time in spring barley. Front Plant Sci 8:896PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arifuzzaman M, Günal S, Bungartz A, Muzammil S, Afsharyan NP et al (2017) Correction: genetic mapping reveals broader role of Vrn-H3 gene in root and shoot development beyond heading in barley. PLOS ONE 12(5):e0177612Google Scholar
  3. Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302PubMedCrossRefGoogle Scholar
  4. Börner A, Buck-Sorlin G, Hayes P, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132CrossRefGoogle Scholar
  5. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bullrich L, Appendino M, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593PubMedCrossRefGoogle Scholar
  7. Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880PubMedCrossRefGoogle Scholar
  8. Castro AJ, Cuesta-Marcos A, Hayes PM, Locatelli A, Macaulay M, Mastandrea N, Silveira M, Thomas WTB, Viega L (2017) The completely additive effects of two barley phenology-related genes (eps2S and sdw1) are explained by specific effects at different periods within the crop growth cycle. Plant Breed 136:663–670CrossRefGoogle Scholar
  9. Cattivelli L, Ceccarelli S, Romagosa I, Stanca M (2010) Abiotic stresses in barley: problems and solutions. In: Ullrich SE (ed) Barley: improvement, production, and uses. Wiley, New Jersey, pp 282–306Google Scholar
  10. Cockram J, Jones H, Leigh FJ, O’sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244PubMedCrossRefGoogle Scholar
  11. Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:403–410CrossRefGoogle Scholar
  12. Constable GA, Rose IA (1988) Variability of soybean phenology response to temperature, daylength and rate of change in daylength. Field Crop Res 18(1):57–69CrossRefGoogle Scholar
  13. Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szűcs P, Gracia MP, Lasa JM, Casas AM (2008) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed 21:455–471CrossRefGoogle Scholar
  14. Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109(42):16969–16973PubMedCrossRefGoogle Scholar
  15. Decousset L, Griffiths S, Dunford R, Pratchett N, Laurie D (2000) Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor Appl Genet 101:1202–1206CrossRefGoogle Scholar
  16. Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184PubMedCrossRefGoogle Scholar
  17. Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407CrossRefGoogle Scholar
  18. Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ellis R, Roberts E, Summerfield R, Cooper J (1988) Environmental control of flowering in barley (Hordeum vulgare L.). II. Rate of development as a function of temperature and photoperiod and its modification by low-temperature vernalization. Ann Bot 62:145–158CrossRefGoogle Scholar
  20. Ellis RP, Forster BP, Robinson D, Handley L, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17PubMedCrossRefGoogle Scholar
  21. Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  22. Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci 109:8328–8333PubMedCrossRefGoogle Scholar
  23. Fischer R (2007) Understanding the physiological basis of yield potential in wheat. J Agric Sci 145:99CrossRefGoogle Scholar
  24. Fowler DB, Breton G, Limin AE, Mahfoozi S, Sarhan F (2001) Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol 127:1676–1681PubMedPubMedCentralCrossRefGoogle Scholar
  25. Franckowiak J (2002) BGS 348, early maturity 5, Eam5. Barley Genet Newsl 32:109Google Scholar
  26. Franckowiak J, Konishi T (2002) Early maturity 6, Eam6. Barley Genet Newsl 32:86–87Google Scholar
  27. Franckowiak J, Lundqvist U, Konishi T, Gallagher L (1997) BGS 214, early maturity 8, eam8. Barley Genet Newsl 26:213–215Google Scholar
  28. Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65PubMedCrossRefGoogle Scholar
  29. Gallagher L, Belhadri M, Zahour A (1987) Interrelationships among three major loci controlling heading date of spring barley when grown under short daylengths 1. Crop Sci 27:155–160CrossRefGoogle Scholar
  30. Gallagher L, Soliman K, Vivar H (1991) Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci 31:256–261CrossRefGoogle Scholar
  31. Gilmour SJ, Zeevaart JA, Schwenen L, Graebe JE (1986) Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol 82:190–195PubMedPubMedCentralCrossRefGoogle Scholar
  32. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395PubMedCrossRefGoogle Scholar
  33. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefGoogle Scholar
  34. Hay R, Kirby E (1991) Convergence and synchrony—a review of the coordination of development in wheat. Crop Pasture Sci 42:661–700CrossRefGoogle Scholar
  35. Hayes P, Liu B, Knapp S, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87:392–401PubMedCrossRefGoogle Scholar
  36. Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of arabidopsis. Plant Physiol 138:1106–1116PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ibrahim A, Harrison M, Meinke H, Fan Y, Johnson P, Zhou M (2018) A regulator of early flowering in barley (Hordeum vulgare L.). PLoS ONE 13:e0200722PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527PubMedCrossRefGoogle Scholar
  40. Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262PubMedCrossRefGoogle Scholar
  41. Jia Q, Zhang X-Q, Westcott S, Broughton S, Cakir M, Yang J, Lance R, Li C (2011) Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theor Appl Genet 122:1451–1460PubMedCrossRefGoogle Scholar
  42. Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G (2015) Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genom 16:927CrossRefGoogle Scholar
  43. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219PubMedCrossRefGoogle Scholar
  44. Karsai I, Mészáros K, Szücs P, Hayes P, Láng L, Bedö Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant Breed 118:399–403CrossRefGoogle Scholar
  45. Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes P, Skinner J, Láng L, Bedő Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466PubMedCrossRefGoogle Scholar
  46. Kernich GC, Slafer GA, Halloran GM (1995) Barley development as affected by rate of change of photoperiod. J Agric Sci 124:379–388CrossRefGoogle Scholar
  47. Kjaer B, Jensen J, Giese H (1995) Quantitative trait loci for heading date and straw characters in barley. Genome 38:1098–1104PubMedCrossRefGoogle Scholar
  48. Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kuczyńska A, Mikołajczak K, Ćwiek H (2014) Pleiotropic effects of the sdw1 locus in barley populations representing different rounds of recombination. Electron J Biotechnol 17:217–223CrossRefGoogle Scholar
  50. Laurie DA, Pratchett N, Romero C, Simpson E, Snape JW (1993) Assignment of the denso dwarfing gene to the long arm of chromosome 3(3H) of barley by use of RFLP markers. Plant Breed 111:198–203CrossRefGoogle Scholar
  51. Laurie D, Pratchett N, Snape J, Bezant J (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedCrossRefGoogle Scholar
  52. Li Z, Pinson SRM, Stansel JW, Park WD (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91:374–381PubMedCrossRefGoogle Scholar
  53. Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649PubMedCrossRefGoogle Scholar
  54. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S, Wicker T et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433PubMedCrossRefGoogle Scholar
  55. Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci 97:942–947PubMedCrossRefGoogle Scholar
  56. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685CrossRefGoogle Scholar
  57. Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D, Tanaka K, Handa H, Takeda K, Kato K (2013) Phytochrome C is a key factor controlling long-day flowering in barley. Plant Physiol 163:804–814PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCCGoogle Scholar
  59. Powell W, Caligari P, Thomas W, Jinks J (1985) The effects of major genes on quantitatively varying characters in barley 2. The densoand daylength response loci. Heredity 54:349CrossRefGoogle Scholar
  60. Ren X, Li C, Cakir M, Zhang W, Grime C, Zhang X-Q, Broughton S, Sun D, Lance R (2012) A quantitative trait locus for long photoperiod response mapped on chromosome 4H in barley. Mol Breed 30:1121–1130CrossRefGoogle Scholar
  61. Roberts E, Summerfield R, Cooper J, Ellis R (1988) Environmental control of flowering in barley (Hordeum vulgare L.). I. Photoperiod limits to long-day responses, photoperiod-insensitive phases and effects of low-temperature and short-day vernalization. Ann Bot 62:127–144CrossRefGoogle Scholar
  62. Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental-and occidental-type barley cultivars. Breed Sci 56:243–252CrossRefGoogle Scholar
  63. Sameri M, Pourkheirandish M, Chen G, Tonooka T, Komatsuda T (2011) Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breed Sci 61:183–188CrossRefGoogle Scholar
  64. Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi H-R, Dennis ES, Peacock WJ (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (2009) Hordeum vulgare. J Exp Bot 60:2169–2178PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61PubMedPubMedCentralCrossRefGoogle Scholar
  66. Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497PubMedCrossRefGoogle Scholar
  67. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627PubMedPubMedCentralCrossRefGoogle Scholar
  68. Szűcs P, Karsai I, von Zitzewitz J, Mészáros K, Cooper LLD, Gu YQ, Chen THH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285PubMedCrossRefGoogle Scholar
  69. Takahashi R, Yasuda S (1971) Barley genetics II. In: Proceedings of the second international barley genetics symposiumGoogle Scholar
  70. Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E (2017) Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.). BMC Plant Biol 17:181PubMedPubMedCentralCrossRefGoogle Scholar
  71. Thomas W, Powell W, Swanston J (1991) The effects of major genes on quantitatively varying characters in barley. 4. The GPert and denso loci and quality characters. Heredity 66:381CrossRefGoogle Scholar
  72. Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405PubMedPubMedCentralCrossRefGoogle Scholar
  73. Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tsuda M, Takami S (1991) Changes of heading time and panicle weight in rice subjected to water stress during the early stage of panicle development. Jpn J Crop Sci 60:241–246CrossRefGoogle Scholar
  75. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  76. Van Ooijen JW (2006) JoinMapH 4.0, Software for the calculation of geneticlinkage maps. Plant research international, Wageningen, The NetherlandsGoogle Scholar
  77. Van Ooijen J, Kyazma B (2009) MapQTL® 6, Software for the mapping of quantitative trait in experiment populations of diploid species. Wageningen, Kyazma BVGoogle Scholar
  78. Van Ooijen J, Kyazma B (2011) MapQTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, WageningenGoogle Scholar
  79. von Korff M, Léon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464CrossRefGoogle Scholar
  80. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  81. Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574PubMedPubMedCentralCrossRefGoogle Scholar
  82. Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686PubMedCrossRefGoogle Scholar
  83. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586PubMedCrossRefGoogle Scholar
  84. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330PubMedCrossRefGoogle Scholar
  85. Yasuda S (1978) An earliness gene involved in Chinese native cultivars. Barley Genet Newsl 8:127–128Google Scholar
  86. Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet 130:1559–1568PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.TIAUniversity of TasmaniaProspectAustralia
  2. 2.Department of AgronomyZhejiang UniversityHangzhouChina

Personalised recommendations