Advertisement

Euphytica

, 215:38 | Cite as

Genetic diversity among common bean cultivars based on agronomic traits and molecular markers and application to recommendation of parent lines

  • Helton Santos PereiraEmail author
  • Ana Paula Simplício Mota
  • Luana A. Rodrigues
  • Thiago Lívio Pessoa Oliveira de Souza
  • Leonardo Cunha Melo
Article
  • 28 Downloads

Abstract

Estimates of genetic diversity based on molecular and morphological data are common in the literature; however, they do not take the most agronomically important traits into consideration. Use of these estimates for recommending parent lines has not had much practical success because the populations thus generated generally exhibit wide variability, but medium to low means for the target trait. A total of 17 common bean cultivars were evaluated in 31 trials conducted in 2008, 2009, and 2010 in the rainy, dry, and winter crop seasons in Brazil. Twelve traits of agronomic importance were evaluated. Analysis of variance were performed on the data and the means were used to estimate the Euclidean distances. In addition, leaves were collected, DNA extracted, and amplification reactions were performed with 33 microsatellite markers to obtain the genetic distances based on complement of the weighted similarity indexes. The genotypes were clustered by the Tocher method. Both forms of estimation of genetic distance showed diversity among the cultivars. The Pearson correlation estimate between the agronomic and molecular genetic distance matrices was significant (0.32), but of low magnitude, which indicates that the distances estimated by the two sets of data supply different information. Coincidence between the clusters was 53%, confirming that this information can truly be considered complementary. The phenotypic mean values for grain yield, the divergence estimates, and the clusters formed by phenotypic and molecular data indicated some crosses with greater probability of obtaining higher yielding lines: BRSMG Majestoso × CNFC 10431, BRS Estilo × BRS Notável, and BRS Estilo × BRS Pontal.

Keywords

Phaseolus vulgaris Yield Anthracnose Angular leaf spot Fusarium wilt Dry edible bean 

Notes

Acknowledgements

The authors thank Embrapa Arroz e Feijão and its partners for making infrastructure and labor available, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting scholarships for the Master’s degree to APSM and for technological development and innovative extension to HSP and LCM.

References

  1. Batista CEA, Bueno LG, Resende TN, Lima VR, Wendland A, Pereira HS, Faria LC, Melo LC, Souza TLPO (2014) Parental genetic representativeness in black seeded common bean progenies from the Embrapa recurrent selection program for tolerance to BGMV. Annu Rep Bean Improv Coop 57:221–222Google Scholar
  2. Benchimol LL, Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Formighieri EF, Souza AP (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Resour Crop Evol 54:1747–1762CrossRefGoogle Scholar
  3. Cabral PDS, Soares TCB, Lima ABP, Alves DS, Nunes JA (2011) Beans (Phaseolus spp.): model food legumes. Rev Ciênc Agron 42:898–905CrossRefGoogle Scholar
  4. Cardoso PCB, Brondani C, Menezes IPP, Valdisser PAMR, Borba TCO, Del Peloso MJ, Vianello RP (2014) Discrimination of common bean cultivars using multiplexed microsatellite markers. Genet Mol Res 13:1964–1978CrossRefGoogle Scholar
  5. Cargnelutti Filho A, Ribeiro ND, Reis RCP, Souza JR, Jost E (2008) Comparação de métodos de agrupamento para o estudo da divergência genética em cultivares de feijão. Rev Ciên Rural 38:2138–2145CrossRefGoogle Scholar
  6. Cargnelutti Filho A, Ribeiro ND, Burin C (2010) Consistência do padrão de agrupamento de cultivares de feijão conforme medidas de dissimilaridade e métodos de agrupamento. Pesqui Agropecu Bras 45:236–243CrossRefGoogle Scholar
  7. Cochran WG (1954) Methods for strengthening the common χ2 tests. Biometrics 10:417–451CrossRefGoogle Scholar
  8. Colombari Filho JM, Geraldi IO, Barona MAA (2011) Heterose e distâncias genéticas moleculares para a produção de grãos em soja. Ciênc Agrotecnol 34:940–945CrossRefGoogle Scholar
  9. Cooper HD, Spillan EC, Hodgkin T (2001) Broadening the genetic base of crops: an overview. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 1–23CrossRefGoogle Scholar
  10. Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW (2013) Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS ONE 8:1–10Google Scholar
  11. Cruz CD (2013) GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276CrossRefGoogle Scholar
  12. Cruz CD, Ferreira FM, Pessoni LA (2011) Biometria aplicada ao estudo da diversidade genética. Universidade Federal de Viçosa, Viçosa, p 620pGoogle Scholar
  13. Damasceno e Silva KJ, Souza EA, Ishikawa FH (2007) Caracterization of Colletotrichum lindemuthianum isolates from the State of Minas Gerais. J Phytopathol 151:241–247CrossRefGoogle Scholar
  14. Damasceno e Silva KJ, Souza EA, Sartorato A, Freire CNS (2008) Pathogenic variability of isolates of Pseudocercospora griseola, the cause of common bean angular leaf spot, and its implications for resistance breeding. J Phytopathol 156:602–606CrossRefGoogle Scholar
  15. Díaz LM, Buendía HF, Duque MC, Blair MW (2011) Genetic diversity of Colombian landraces of common bean as detected through the use of silver-stained and fluorescently labelled microsatellites. Plant Genet Resour 9:86–96CrossRefGoogle Scholar
  16. Elias HT, Gonçalves-Vidigal MC, Gonela A, Vogt GA (2007) Variabilidade genética em germoplasma tradicional de feijão-preto em Santa Catarina. Pesqui Agropecu Bras 42:1443–1449CrossRefGoogle Scholar
  17. FAO (2018) Faostat. http://faostat3.fao.org/browse/Q/QC/E. Accessed 27 Nov 2018
  18. Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética. Embrapa Cenargem, Brasília, p 220Google Scholar
  19. Garcia RAV, Rangel PN, Brondani C, Martins WS, Melo LC, Carneiro MS, Borba TC, Brondani RPV (2011) The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet 12:41–52CrossRefGoogle Scholar
  20. Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706PubMedGoogle Scholar
  21. Hefni M, Öhrvik V, Mohamed T, Witthoft C (2010) Folate content in foods commonly consumed in Egypt. Food Chem 121:540–545CrossRefGoogle Scholar
  22. Manly BFJ (1997) Randomization, bootstrap and monte carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  23. Melo LC (2009) Procedimentos para condução de experimentos de valor de cultivo e uso em feijoeiro-comum. Documentos 239. EMBRAPA, Santo Antônio de Goiás-GO, pp 1–104Google Scholar
  24. Menezes MVCO, Santos JB, Menezes M (2004) Genetic diversity in Carioca and Pérola cultivars of common bean based on RAPD markers. Crop Breed Appl Biotechnol 4:178–182Google Scholar
  25. Morais SRP, Vieira AF, Almeida LCS, Rodrigues LA, Melo PGS, Faria LC, Melo LC, Pereira HS, Souza TLPO (2016) Application of microsatellite markers to confirm controlled crosses and assess genetic identity in common bean. Crop Breed Appl Biotechnol 16(234–239):2016Google Scholar
  26. Palomino EC, Mori ES, Zimback L, Tamborussi EV, Morais CV (2005) Genetic diversity of common bean genotypes of Carioca commercial group using RAPD markers. Crop Breed Appl Biotechnol 5:80–85CrossRefGoogle Scholar
  27. Perseguini JMKC, Chioratto AF, Zucchi MI, Colombo CA, Carbonell SAM, Mondego JMC, Gazaffi R, Garcia AAF, Campos T, Souza AP (2011) Genetic diversity in cultivated carioca common beans based on molecular marker analysis. Genet Mol Biol 34:88–102CrossRefGoogle Scholar
  28. PhaseolusGenes (2015). http://phaseolusgenes.bioinformatics.ucdavis.edu/. Accessed 20 Nov 2015
  29. Phytozome 10.3 (2015). http://phytozome.jgi.doe.gov/pz/portal.html. Accessed 20 Nov 2015
  30. Proctor JR, Watts BM (1987) Development of a modified Mattson bean cooker procedure based on sensory panel cookability evaluation. Can Inst Food Sci Technol 20:9–14CrossRefGoogle Scholar
  31. Ramalho MAP, Ferreira DF, Oliveira AC (2005) Experimentação em genética e melhoramento de plantas. UFLA, LavrasGoogle Scholar
  32. Rao CR (1952) Advanced statistical methods in biometric research. Wiley, New YorkGoogle Scholar
  33. Resende MDV, Duarte JBD (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui Agropecu Trop 37:182–194Google Scholar
  34. Sarruge JR, Haag HP (1974) Análises químicas em plantas. ESALQ, PiracicabaGoogle Scholar
  35. Silva FC, Melo PGS, Pereira HS, Melo LC (2014) Genetic control and estimation of genetic parameters for seed-coat darkening of carioca beans. Genet Mol Res 13:6486–6496CrossRefGoogle Scholar
  36. Singh D (1981) The relative importance of characters affecting genetic divergence. Indian J Genet Plant Breed 41:237–245Google Scholar
  37. Veloso JS, Silva W, Pinheiro LR, Santos JB, Fonseca Júnior NS, Euzébio MP (2015) Genetic divergence of common bean cultivars. Genet Mol Res 14:11281–11291CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Helton Santos Pereira
    • 1
    Email author
  • Ana Paula Simplício Mota
    • 2
  • Luana A. Rodrigues
    • 1
  • Thiago Lívio Pessoa Oliveira de Souza
    • 1
  • Leonardo Cunha Melo
    • 1
  1. 1.Embrapa Arroz e FeijãoSanto Antônio de GoiásBrazil
  2. 2.Universidade Federal de GoiásGoiâniaBrazil

Personalised recommendations