Advertisement

Euphytica

, 215:2 | Cite as

Validation of the effects of the Gpc-B1 high grain protein concentration locus from Lillian hard red spring wheat (Triticum aestivum L.) using locus specific markers

  • Firdissa E. Bokore
  • Ron E. Knox
  • Ron M. DePauw
  • Richard D. Cuthbert
  • Igor P. Valerio
  • Fran R. Clarke
  • Brian L. Beres
  • Yuefeng Ruan
  • Heather L. Campbell
Article

Abstract

Wheat grain protein concentration (GPC) is negatively associated with economic grain yield (GY) hindering attempts to improve these traits simultaneously. Studies indicate the incorporation of the Gpc-B1 high grain protein gene from emmer wheat into commercial wheat cultivars improves grain quality and nitrogen use efficiency with little effect on GY. Molecular markers are helpful in tracking such genes in breeding lines. Our objectives were to study the cultivar Lillian which has Xucw71 and Xuhw89 marker molecular variants commonly associated with Gpc-B1, in order to (1) validate the efficacy of the genetic markers for selecting Gpc-B1 associated with high GPC from Lillian, and (2) assess the effect of the presence of the DNA segment linked to these markers on GPC, GY and yield related traits in genetic populations. Four genetic populations deriving from the Gpc-B1 donor Lillian were developed and partitioned using markers Xucw71 and Xuhw89 into two groups of lines, one group bearing homozygous Gpc-B1 (M+) and the second the homozygous null (M−) allele. Field tests were conducted at Swift Current and Stewart Valley, Saskatchewan, and Lethbridge, Alberta over 2 years. Gpc-B1 significantly influenced GPC, GY, thousand kernel weight (TKW) and test weight, but its effect on plant maturity was inconsistent showing variable effects in different populations and environments. Significantly higher GPC (P ≤ 0.0001) was detected in lines with the M+ than the M− allele. Genetic markers Xucw71 and Xuhw89 were effective in discriminating Gpc-B1 from Lillian confirming their value in marker assisted breeding.

Keywords

Xucw71 Xuhw89 DNA markers Protein content Triticum 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the producer funded Wheat Check-off (administered by the Western Grains Research Foundation) and Agriculture and Agri-Food Canada and technical assistance provided by members of the wheat breeding and molecular biology research group at SCRDC-AAFC is sincerely appreciated.

References

  1. Avivi L (1978) High protein concentration in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings 5th international wheat genetics symposium Indian society of genetics and plant breeding, New Delhi, pp 372–380Google Scholar
  2. Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, Mastrangelo AM, Cattivelli L, Gadaleta A (2012) Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30:79–92CrossRefGoogle Scholar
  3. Bogard M, Allard V, Martre P, Heumez E, Snape JW, Orford S, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2013) Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Mol Breed 31:587–599CrossRefGoogle Scholar
  4. Brevis JC, Dubcovsky J (2010) Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield. Crop Sci 50:93–104CrossRefGoogle Scholar
  5. Brown PD, Randhawa HS, Fetch JM, Meiklejohn M, Fox SL, Humphreys DG, Green D, Wise I, Fetch T, Gilbert J, McCallum B, Menzies J (2017) Conquer red spring wheat. Can J Plant Sci 97:147–152Google Scholar
  6. Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054CrossRefGoogle Scholar
  7. Cantu D, Pearce SP, Distelfeld A, Christiansen MW, Uauy C, Akhunov E, Fahima T, Dubcovsky J (2011) Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genom 12:492CrossRefGoogle Scholar
  8. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939CrossRefGoogle Scholar
  9. Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220CrossRefGoogle Scholar
  10. DePauw RM, Townley-Smith TF, Clarke JM, McCaig TN, McBean DS (1986) Lancer hard red spring wheat. Can J Plant Sci 66:409–412CrossRefGoogle Scholar
  11. DePauw RM, McLeod JG, Clarke JM, McCaig TN, Fernandez MR, Knox RE (1994) AC Eatonia hard red spring wheat. Can J Plant Sci 74:821–823CrossRefGoogle Scholar
  12. DePauw RM, Clarke JM, Knox RE, Fernandez MR, McCaig TN, McLeod JG (2000) AC Abbey hard red spring wheat. Can J Plant Sci 80:123–127CrossRefGoogle Scholar
  13. DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401CrossRefGoogle Scholar
  14. DePauw RM, Knox RE, Clarke FR, McCaig TN, Clarke JM, Fernandez MR (2006) Infinity hard red spring wheat. Can J Plant Sci 86:737–742CrossRefGoogle Scholar
  15. DePauw RM, Knox RE, Clarke FR, Wang H, Fernandez MR, Clarke JM, McCaig TN (2007) Shifting undesirable correlations. Euphytica 157:409–415CrossRefGoogle Scholar
  16. DePauw RM, Knox RE, Humphreys DG, Thomas JB, Fox SL, Brown PD, Singh AK, Pozniak C, Randhawa HS, Fowler DB, Graf RJ, Hucl P (2011) New breeding tools impact Canadian commercial farmer fields. Czech J Genet Plant Breed 47:28–34CrossRefGoogle Scholar
  17. Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microlinearity between a 2-cM region encompassing the grain protein content locus Gpc-B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66CrossRefGoogle Scholar
  18. Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein concentration gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763CrossRefGoogle Scholar
  19. Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643CrossRefGoogle Scholar
  20. Eagles HA, McLean R, Eastwood RF, Appelbee MJ, Cane K, Martin PJ, Wallwork H (2014) High-yielding lines of wheat carrying Gpc-B1 adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci 65:854–861CrossRefGoogle Scholar
  21. Fetch TG (2005) Races of Puccinia graminis on wheat, barley, and oat in Canada, in 2002 and 2003. Can J Plant Pathol 27:572–580CrossRefGoogle Scholar
  22. Fox SL, Townley-Smith TF, Humphreys DG, McCallum BD, Fetch TG, Gaudet DA, Gilbert JA, Menzies JG, Noll JS, Howes NK (2006) Somerset hard red spring wheat. Can J Plant Sci 86:163–167CrossRefGoogle Scholar
  23. Graf RJ, Potts DA, Hanson KM (2003a) Journey hard red spring wheat. Can J Plant Sci 83:807–811CrossRefGoogle Scholar
  24. Graf RJ, Hucl P, Orshinsky BR, Kartha KK (2003b) McKenzie hard red spring wheat. Can J Plant Sci 83:565–569CrossRefGoogle Scholar
  25. Hoffmann JA, Metzger RJ (1976) Current status of virulence genes and pathogenic races of the wheat bunt fungi in the northwestern USA. Phytopathology 66:657–660CrossRefGoogle Scholar
  26. Humphreys DG, Townley-Smith TF, Lukow O, McCallum B, Gaudet D, Gilbert J, Fetch T, Menzies J, Brown D, Czarnecki E (2010) Burnside extra strong hard red spring wheat. Can J Plant Sci 90:79–84CrossRefGoogle Scholar
  27. Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064CrossRefGoogle Scholar
  28. Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L,) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589CrossRefGoogle Scholar
  29. Kade M, Barneix AJ, Olmos S, Dubcovsky J (2005) Nitrogen uptake and remobilization in tetraploid Langdon durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed 124:343–349CrossRefGoogle Scholar
  30. Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524CrossRefGoogle Scholar
  31. Knox RE, Clarke FR, Clarke JM, Fox SL, DePauw RM, Singh AK (2012) Enhancing the identification of genetic loci and transgressive segregants for preharvest sprouting resistance in a durum wheat population. Euphytica 186:193–206CrossRefGoogle Scholar
  32. Knox RE, Campbell HL, Clarke FR, Menzies JG, Popovic Z, Procunier JD, DePauw RM, Cuthbert RD (2014) Quantitative trait loci for resistance in wheat (Triticum aestivum) to Ustilago tritici. Can J Plant Pathol 36:187–201CrossRefGoogle Scholar
  33. Kuhn JC, Stubbs TL, Carter AH (2016) Effect of the Gpc-B1 allele in hard red winter wheat in the US Pacific Northwest. Crop Sci 56:1009–1017CrossRefGoogle Scholar
  34. Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30CrossRefGoogle Scholar
  35. Marker assisted selection (MAS) in wheat. http://maswheat.ucdavis.edu/protocols/HGPC/. Accessed 30 Apr 2018
  36. McCaig TN, DePauw RM, McLeod JG, Knox RE, Clarke JM, Fernandez MR (1996) AC Barrie hard red spring wheat. Can J Plant Sci 76:337–339CrossRefGoogle Scholar
  37. McCallum BD, Seto-Goh P (2006) Physiologic specialization of Puccinia triticina the causal agent of wheat leaf rust in Canada in 2004. Can J Plant Pathol 28:566–576CrossRefGoogle Scholar
  38. Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 7:1243–1251CrossRefGoogle Scholar
  39. Pallotta MA, Warner P, Fox RL, Kuchel H, Jeffries SP, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings 10th international wheat genetics symposium. Paestum, Italy. Istituto Sperimentale per La Cerealicoltura Roma pp 789–791Google Scholar
  40. Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy J (2014) Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol 14:368CrossRefGoogle Scholar
  41. SAS Institute Inc (2004) SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.Google Scholar
  42. Sherman JD, Lanning SP, Clark D, Talbert LE (2008) Registration of near-isogenic hard- textured wheat lines differing for presence of a high grain protein gene. J Plant Registrations 2:162–164CrossRefGoogle Scholar
  43. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553CrossRefGoogle Scholar
  44. Simmonds N (1995) The relation between yield and protein in cereal grain. J Sci Food Agri 67:309–315CrossRefGoogle Scholar
  45. Tabbita F, Lewis S, Vouilloz JP, Ortega MA, Kade M, Abbate PE, Barneix AJ (2013) Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed 132:48–52CrossRefGoogle Scholar
  46. Tabbita F, Pearce S, Barneix AJ (2017) Breeding for increased grain protein and micronutrient content in wheat: ten years of the Gpc-B1 gene. J Cereal Sci 73:183–191CrossRefGoogle Scholar
  47. Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 122:97–105CrossRefGoogle Scholar
  48. Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794CrossRefGoogle Scholar
  49. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301CrossRefGoogle Scholar
  50. Williams PC (1979) Screening wheat for protein and hardness by near infrared reflectance spectroscopy. Cereal Chem 56:169–172Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Firdissa E. Bokore
    • 1
  • Ron E. Knox
    • 1
  • Ron M. DePauw
    • 2
  • Richard D. Cuthbert
    • 1
  • Igor P. Valerio
    • 3
  • Fran R. Clarke
    • 1
  • Brian L. Beres
    • 4
  • Yuefeng Ruan
    • 1
  • Heather L. Campbell
    • 1
  1. 1.Agriculture and Agri-Food CanadaSwift Current Research and Development Centre (SCRDC)Swift CurrentCanada
  2. 2.Advancing Wheat TechnologiesSwift CurrentCanada
  3. 3.OR Melhoramento de SementesPasso FundoBrazil
  4. 4.Agriculture and Agri-Food CanadaLethbridge Research and Development CentreLethbridgeCanada

Personalised recommendations