Advertisement

Euphytica

, 214:230 | Cite as

Resistance to Phytophthora cinnamomi in Castanea spp. is under moderately high genetic control mainly because of additive genetic variance

  • A. López-Villamor
  • J. Fernández-López
  • B. Míguez-Soto
  • M. E. Sánchez
Article
  • 58 Downloads

Abstract

Susceptibility to Phytophthora cinnamomi is one of the main traits in Castanea sativa breeding programs. An inoculation experiment using 25 control pollinated families, with seedlings of these families cloned by cuttings, was conducted by soil infestation with one P. cinnamomi isolate. Forty-seven days after inoculation, foliar and root collar symptoms and root necrosis were recorded. The data were analyzed using a model based on restricted maximum pseudolikelihood methods of the GLIMMIX procedure to estimate the additive, dominance and epistatic components of the genetic variance, as well as the narrow sense heritability and the breeding values. At the end of the experiment, the percentages of dead plants ranged from 4% to 56% in C. sativa, and 18% to 20% in backcrosses to C. sativa, with much lower percentages in the F1 hybrids (C. crenata × C. sativa). Foliar symptoms were proportional to mortality, affecting 28% of the plants, but root collar lesions and root necrosis were more prevalent, affecting 65% and 84% of the plants, respectively. The proportions of genetic to phenotypic variance, 0.50–0.63, and the estimated values of narrow-sense heritability, 0.30–0.46, indicate that resistance to P. cinnamomi is under moderate to moderately high genetic control caused mainly by additive genetic variance. A high number of backcrosses to C. sativa showed good breeding values for resistance to P. cinnamomi.

Keywords

Cuttings Genetic variance components Heritability Ink disease Inoculation 

Notes

Acknowledgements

This study was supported by the project ‘Conservation and breeding of chestnut (2013–2015)’, funded by sub-measure 323.2.3 of the plan ‘Conservation and improvement of natural heritage, convergence region’ from the European Agricultural Fund for Rural Development and by a scholarship (FPI-INIA number 32-495082) linked to the project ‘Genetic structure of populations of the chestnut tree (Castanea sativa Miller) RTA2009-00163-00-00. The authors thank the nursery people of the Forest Research of Lourizán for their help. We thank Scott Lloyd, PhD, from Edanz Group (www.edanzediting.com/ac), for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2018_2309_MOESM1_ESM.tif (1.2 mb)
Supplementary material 1 (TIFF 1271 kb)
10681_2018_2309_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 kb)

References

  1. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol 1:3–16PubMedCrossRefGoogle Scholar
  2. Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe: environmental constraints including climate change. Ann Sci For 53:347–358CrossRefGoogle Scholar
  3. Breisch H (1995). Chataignes et marrons. CTIFLGoogle Scholar
  4. Butcher TB, Stukely MJC, Chester GW (1984) Genetic variation in resistance of Pinus radiata to Phytophthora cinnamomi. For Ecol Manage 8:197–220CrossRefGoogle Scholar
  5. Caetano PCL, Ávila A, Sánchez ME, Trapero A, Coelho AC (2009) Phytophthora cinnamomi populations on Quercus forests from Spain and Portugal. Phytophthoras in forests and natural ecosystems. USDA-Forest Service, Albany, pp 261–269Google Scholar
  6. Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35:212–236PubMedPubMedCentralGoogle Scholar
  7. Dickerson GE (1969) Techniques for research in quantitative animal genetics. Techniques and procedures in animal science research. Am Soc Anim Sci, Albany, pp 36–79Google Scholar
  8. Dobrowolski MP, Tommerup IC, Shearer BL, O’Brien PA (2003) Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopathology 93:695–704PubMedCrossRefGoogle Scholar
  9. Elorrieta Artaza J (1949) El castaño en España. IFIE, MadridGoogle Scholar
  10. Fahrmeir L, Tutz G (1994) Multivariate statistical modelling based on generalized linear models. Springer, New YorkCrossRefGoogle Scholar
  11. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics (4th edn). Longman Scientific and Technical, UKGoogle Scholar
  12. Fei S et al (2012) Modelling chestnut biogeografy for American chestnut restoration. Biodivers Res 18:754–768Google Scholar
  13. Fernández-López J (2011) Identification of the genealogy of interspecific hybrids between Castanea sativa, Castanea crenata and Castanea mollissima. For Syst 20(1):65–80Google Scholar
  14. Fernández-López et al. (2014) Guía de cultivo do castiñeiro para a produción de castaña. Xunta de Galicia, Consellería do Medio Rural e do MarGoogle Scholar
  15. Fernández-López J, Fernández-Cruz J (2015) Identification of traditional Galician sweet chestnut varieties using ethnographic and nuclear microsatellite data. Tree Genet Genomes 11:1–18CrossRefGoogle Scholar
  16. Fernández-López J, Zas R, Blanco R, Díaz R (2005) Geographic differentiation in adaptive traits of wild chestnut Spanish populations. Investigación Agraria, Sistemas y Recursos Forestales 14(1):13–26CrossRefGoogle Scholar
  17. Fernández-López J, Miranda-Fontaiña M, Furones-Pérez P (2008) Caracteres de selección en campo de clones de castaño híbrido (Castanea crenata x Castanea sativa) para la produccción de maderaGoogle Scholar
  18. Foster GS, Shaw DV (1988) Using clonal replicates to explore genetic variation in a perennial plant species. Theor Appl Genet 76:788–794PubMedCrossRefGoogle Scholar
  19. Furones-Pérez MP, Fernández-López J (2009) Morphological and phenological description of 38 sweet chestnut cultivars (Castanea sativa Miller) in a contemporary collection. Span J Agric Res 7:829–843CrossRefGoogle Scholar
  20. Hardham AR (2005) Phytophthora cinnamomi. Mol. Plant Pathol 6:589–604Google Scholar
  21. Hardoim PR, Guerra R, Rosa da Costa AM, Serrano MS, Sánchez ME, Coelho ACHM (2016) Temporal metabolic profiling of the Quercus suber-Phytophthora cinnamomi system by middle infrared spectroscopy. For Pathol 46:122–133CrossRefGoogle Scholar
  22. Hüberli D, Tommerup IC, Hardy GEStJ (2000) False-negative isolations or absence of lesions may cause mis-diagnosis of diseased plants infected with Phytophthora cinnamomi. Australas Plant Pathol 29:164–169CrossRefGoogle Scholar
  23. Isik F (2009) Lecture 9: genetic correlations and correlated response. For 728, Quantitative forest genetic course notes, pp 1–23Google Scholar
  24. Jung T, Orlikowski L, Henricot B et al (2015) Widespread Phytophthora infestations in European nurseries and forests, seminatural and horticultural ecosystems at high risk of Phytophthora diseases. For Pathol 46:134–163.  https://doi.org/10.1111/efp.12239 CrossRefGoogle Scholar
  25. Krebs SL, Wilson MD (2002) Resistance to Phytophthora root rot in contemporary rhododendron cultivars. HortScience 37:790–792Google Scholar
  26. Linde C, Drenth A, Wingfield MJ (1999) Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. Eur J Plant Pathol 105:667–680CrossRefGoogle Scholar
  27. Lopes Gomes A, Abreu C (1997) Heritabilidade de alguns aspectos da resistência da Castanea sativa Mill. á Phytophthora cinnamomi Rands. In: Congreso Forestal, pp 341–346Google Scholar
  28. López-Villamor A, Míguez-Soto B, Fernández-López J (2017) Adventitious root formation in Castanea sp. semihard cuttings is under moderate genetic control caused mainly by non-additive genetic variance. Can J For Res 47:946–956CrossRefGoogle Scholar
  29. Lynch M, Walsh B (1998) Genetics and analysis of quantittative traits. Synauer Associates, SunderladGoogle Scholar
  30. Míguez-Soto B, Fernández-López J (2012) Genetic parameters and predicted selection responses for timber production traits in a Castanea sativa progeny trial: developing a breeding programme. Tree Genet Genomes 8(2):409–423CrossRefGoogle Scholar
  31. Míguez-Soto B, Fernández-López J (2014) Variation in adaptive traits among and within Spanish and European populations of Castanea sativa: selection of trees for timber production. New For 46:23–50CrossRefGoogle Scholar
  32. Míguez-Soto B, López-Villamor A, Fernández-López J (2016) Additive and non-additive genetic parameters for multipurpose traits in a clonally replicated incomplete factorial test of Castanea spp. Tree Genet Genomes 12:1–14CrossRefGoogle Scholar
  33. Miranda-Fontaiña ME, Fernández-López J, others (2013) Estudio de variabilidad genética de Castanea sativa en resistencia a Phytophthora cinnamomi, entre y dentro de poblaciones naturales de cuatro parques naturales de Galicia (España). In: Congreso Forestal 2013Google Scholar
  34. Miranda-Fontaíña ME, Fernández-López J, Vettraino AM, Vannini A (2007) Resistance of Castanea clones to Phytophthora cinnamomi: testing and genetic control. Silvae Genet 56:11–21CrossRefGoogle Scholar
  35. Oßwald W, Fleischmann F, Rigling D, Diez J, Coelho AC, Cravador A, Dalio RJ, Horta M, Pfanz H, Robin G Sipos, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defense in woody plant-Phytophthora interactions. For Pathol 44:169–190CrossRefGoogle Scholar
  36. Ploetz R, Schnell RJ, Haynes J (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262–268CrossRefGoogle Scholar
  37. Ríos P, González M, Obregón S, Carbonero MD, Leal JR, Fernández P, de Haro A, Sánchez ME (2017) Brassica-based seedmeal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathol Mediterr 56:392–399Google Scholar
  38. Robin C, Desprez-Loustau ML (1998) Testing variability in pathogenicity of Phytophthora cinnamomi. Eur J Plant Pathol 104:465–475CrossRefGoogle Scholar
  39. Robin C, Desprez-Loustau ML, Capron G, Delatour C (1998) First record in France and pathogenicity of Phytophthora cinnamomi on cork and holm oak. Ann Sci For 55:869–883CrossRefGoogle Scholar
  40. Robin C, Morel O, Vettraino AM et al (2006) Genetic variation in susceptibility to Phytophthora cambivora in European chestnut (Castanea sativa). For Ecol Manag 226:199–207CrossRefGoogle Scholar
  41. Romero MA, Sánchez JE, Jiménez JJ et al (2007) New pythium taxa causing root rot on Mediterranean Quercus species in South-West Spain and Portugal. J Phytopathol 155:289–295CrossRefGoogle Scholar
  42. Salesses G, Ronco L, Chauvin JE, Chapa J (1993) Amelioration genetique du chataignier. Mise au point de tests d’evaluation du comportement vis a vis de la maldie de l’encre. Arboric Fruit 458:23–31Google Scholar
  43. Sánchez ME, Caetano PC, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in southwestern Spain. For Pathol 32:5–18CrossRefGoogle Scholar
  44. Sánchez ME, Andicoberry S, Trapero A (2005) Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. For Pathol 35:115–125CrossRefGoogle Scholar
  45. Santos C, Machado H, Correia I et al (2015) Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance. Plant Pathol 64:901–910CrossRefGoogle Scholar
  46. Santos C, Duarte S, Tedesco S, Fevereiro P, Costa RL (2017) Expression profiling of Castanea genes during resistant and susceptible interactions with the oomycete pathogen Phytophthora cinnamomi reveal possible mechanisms of immunity front. Plant Sci 8:515.  https://doi.org/10.3389/fpls.2017.00515 CrossRefGoogle Scholar
  47. SAS/STAT 9.2. User’s Guide (2009) SAS Institute Inc., Cary, NC, USAGoogle Scholar
  48. Schad C, Solignat G, Grente J, Venot P (1952) Recherches sur le châtaignier à la Station de Brive. In: Annales d’Amelioration des Plantes, pp 369–453Google Scholar
  49. Self SG, Lian KY (1987) Asymptotic properties of maximum likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610CrossRefGoogle Scholar
  50. Serrano MS, Fernández-Rebollo P, De Vita P, Sánchez ME (2012) Susceptibility of common herbaceous crops to Phytophthora cinnamomi and its influence on Quercus root rot in rangelands. Eur J Plant Pathol 134:409–414CrossRefGoogle Scholar
  51. Stukely MJC, Crane CE (1994) Genetically Based Resistance oi Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology 84:650–656CrossRefGoogle Scholar
  52. Urquijo-Landaluce P (1957) La regeneración del castaño. Boletín de Patología Vegetal y Entomología Agrícola 22:217–232Google Scholar
  53. Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New YorkGoogle Scholar
  54. Vettraino AM, Morel O, Perlerou C, Robin S, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands and their association with ink disease and crown decline. Eur J Plant Pathol 111(12):169–180CrossRefGoogle Scholar
  55. Vieitez E (1966) Resistencia a Phytophthora cambivora y Phytophthora cinnamomi de algunas variedades de castaños. Anales del Instituto Forestal de Investigaciones y Experiencias 1:61–74Google Scholar
  56. White TL, Adams WT, Neale DB (2007) Forest genetics. CabiGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Forestry Research Centre of LourizánPontevedraSpain
  2. 2.ETSIAM, Universidad de CórdobaCórdobaSpain

Personalised recommendations