Advertisement

Euphytica

, 214:154 | Cite as

A new DNA marker for sex identification in purple asparagus

  • Mai Mitoma
  • Lei Zhang
  • Itaru Konno
  • Shunpei Imai
  • Satoru Motoki
  • Akira Kanno
Article

Abstract

Garden asparagus (Asparagus officinalis L.) is an economically-important perennial crop. This plant is dioecious, as there are both male and female individuals; male individuals are preferred over females for agricultural production. To reduce the time required for garden asparagus breeding, various male-specific DNA markers are utilized. Male-specific DNA markers, such as Asp1-T7sp and MSSTS710, are currently available for sex identification in many asparagus cultivars. In the current study, we found that these markers are not suitable for sex identification in the purple asparagus cultivar ‘Pacific Purple’, as male-specific amplification of this marker was detected in some male individuals of this cultivar but not in other males. The Asp1-T7sp marker is suitable for use in sex identification in various Asparagus species related to A. officinalis, indicating that the region around this marker is conserved among these species. Thus, we isolated a DNA fragment around this marker by inverse PCR and produced a new DNA marker, MspHd, based on this sequence. However, like Asp1-T7sp and MSSTS710, MspHd was not suitable for sex identification in the cultivar ‘Pacific Purple’. Since all ‘Pacific Purple’ males have morphologically similar male flowers with functional stamens, we produced a new male-specific marker based on the sex determination gene, MSE1/AspMYB35/AspTDF1, which is responsible for stamen development. This marker, named AspMSD, is suitable for sex identification in ‘Pacific Purple’. In addition, this marker can be utilized for sex identification in various asparagus cultivars and some related Asparagus species.

Keywords

Male-specific marker Sex determination gene MSE1/AoMYB35/AspTDF1 ‘Pacific Purple’ Asparagus species Dioecious 

Notes

Acknowledgements

We thank Ms. Yoko Kakimoto for her help with asparagus cultivation. This work was supported in part by the Matsushima Horticultural Development Foundation (Japan) and a Grant-in-Aid for Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (No. 27002B) from the Ministry of Agriculture, Forestry and Fisheries (MAFF) (Japan).

References

  1. Benson BL, Mullen RJ, Dean BB (1996) Three new green asparagus cultivars; Apollo, Atlas and Grande and one purple cultivar, Purple Passion. Acta Hortic 415:59–65CrossRefGoogle Scholar
  2. Caporali E, Carboni A, Galli MG, Rossi G, Spada A, Marziani Longo GP (1994) Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. Sex Plant Reprod 7:239–249CrossRefGoogle Scholar
  3. Castro P, Gil J, Cabrera A, Moreno R (2013) Assessment of genetic diversity and phylogenetic relationships in Asparagus species related to Asparagus officinalis. Genet Resour Crop Evol 60:1275–1288CrossRefGoogle Scholar
  4. Falloon PG, Andersen AM (1999) Breeding purple asparagus from tetraploid “Violetto d’Albenga”. Acta Hort 479:109–113CrossRefGoogle Scholar
  5. Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, Mercati F, Riccardi P, McKain MR, Kakrana A, Tang H, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan H, Telgmann-Rauber A, Kanno A, Yue Z, Chen H, Li W, Chen Y, Xu X, Zhang Y, Luo S, Chen H, Gao J, Mao Z, Pires JC, Luo M, Kudrna D, Wing RA, Meyers BC, Yi K, Kong H, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen G (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8:1279CrossRefPubMedPubMedCentralGoogle Scholar
  6. Honda H, Hirai A (1990) A simple and efficient method for identification of hybrids using nonradioactive rDNA as probe. Jpn J Breed 40:339–348CrossRefGoogle Scholar
  7. Ii Y, Uno Y, Kanechi M, Inagaki N (2012a) Screening of sex in asparagus at early growth stages. HortTechnology 22:77–82Google Scholar
  8. Ii Y, Uragami A, Uno Y, Kanechi M, Inagaki N (2012b) RAPD based analysis of differences between male and female genotypes of Asparagus officinalis. Hort Sci (Prague) 39:33–37Google Scholar
  9. Jamsari A, Nits I, Reamon-Büttner SM, Jung C (2004) BAC-derived diagnostic markers for sex determination in asparagus. Theor Appl Genet 108:1140–1146CrossRefPubMedGoogle Scholar
  10. Kanno A, Yokoyama J (2011) Asparagus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vegetables. Springer, Berlin, pp 23–42CrossRefGoogle Scholar
  11. Kanno A, Kubota S, Ishino K (2014) Conversion of a male-specific RAPD marker into an STS marker in Asparagus officinalis L. Euphytica 197:39–46CrossRefGoogle Scholar
  12. Kanno A, Sato T, Mitoma M, Murakami K (2017) A method for sex identification in asparagus using DNA from seeds. Euphytica 213:223CrossRefGoogle Scholar
  13. Kubota S, Konno I, Kanno A (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124:345–354CrossRefPubMedGoogle Scholar
  14. Löptien H (1979) Identification of the sex chromosome pair in asparagus (Asparagus officinalis L.). Z Pflanzenzüchtg 82:162–173Google Scholar
  15. Moreno R, Espejo JA, Cabrera A, Millán T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ asparagus (Asparagus officinalis L.) population; a Spanish tetraploid landrace. Genet Resour Crop Evol 53:729–736CrossRefGoogle Scholar
  16. Moreno R, Espejo JA, Cabrera A, Gil J (2008) Origin of tetraploid cultivated asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers’ polymorphism. Ann Appl Biol 153:233–241Google Scholar
  17. Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S (2017) A MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22:115–123CrossRefPubMedGoogle Scholar
  18. Nakayama H, Ito T, Hayashi Y, Sonoda T, Fukuda T, Ochiai T, Kameya T, Kanno A (2006) Development of sex-linked primers in garden asparagus (Asparagus officinalis L.). Breed Sci 56:327–330CrossRefGoogle Scholar
  19. Regalado JJ, Gil J, Castro P, Moreno R, Lopez-Encina C (2014) Employment of molecular markers to develop tetraploid “supermale” asparagus from andromonoecious plants of the landrace ‘Morado de Huétor’. Span J Agric Res 12:1131–1136CrossRefGoogle Scholar
  20. Rick LM, Hanna GL (1943) Determination of sex in Asparagus officinalis. Am J Bot 30:711–714CrossRefGoogle Scholar
  21. Sneep J (1953) The significance of andromonoecy for the breeding of Asparagus officinalis L. Euphytica 2:89–172CrossRefGoogle Scholar
  22. Tsugama D, Matsuyama K, Ide M, Hayashi M, Fujino K, Masuda K (2017) A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci Rep 7:41497CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mai Mitoma
    • 1
  • Lei Zhang
    • 1
  • Itaru Konno
    • 1
  • Shunpei Imai
    • 2
  • Satoru Motoki
    • 3
  • Akira Kanno
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Graduate School of AgricultureMeiji UniversityKawasakiJapan
  3. 3.Faculty of AgricultureMeiji UniversityKawasakiJapan

Personalised recommendations