, Volume 207, Issue 2, pp 463–473 | Cite as

Stay-green QTLs in temperate elite maize

  • M. Kante
  • P. Revilla
  • M. De La Fuente
  • M. Caicedo
  • B. OrdásEmail author


The ability to stay-green (SG) in later stages of the crop cycle is a valuable trait for plants cultivated in standard or stressful environments. Few QTLs studies for SG have been conducted in temperate maize, apart from some experiments carried out with Chinese lines. The aim of our study was to identify QTLs related to SG in temperate maize using PHG39, an important SG line in private breeding. We developed two large F2 mapping populations by crossing PHG39 to the no stay-green (NSG) lines B73 (Corn Belt Dent) and EA1070 (European flint). Samples of individuals of the extreme tails (high and low) of the populations for visual score were genotyped. We found an association between markers and SG in three regions at bins 1.04–1.09, 5.02 and 10.04–10.06. The association was strong for some markers in chromosome 1, for example, for bnlg1556 the frequency of the SG allele was 0.75 and 0.34 in the high and the low tail, respectively. Furthermore, for this marker the homozygote’s with the SG allele had 4 times more chlorophyll than the homozygote’s with the NSG allele 2 months after flowering. Some alleles most likely conferred SG because they increased the maximum chlorophyll content at flowering while other alleles did by diminishing the rate of senescence. The SG conferred by some alleles could be functional as some favourable alleles for SG were also favourable for kernel weight. Regardless of the physiological basis of the SG, the significant markers detected could be useful for marker assisted selection.


Chlorophyll content Fluorescence Photosynthesis Senescence Zea mays 



Part of thesis submitted by M Kante in partial fulfilment of requirements for a MS degree from the International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM). Research supported by the Spanish National Plan for Research and Development (project code AGL2010-22254/C02-00 and AGL2013-48852-C3-1-R). M Kante acknowledges a Grant from the West Africa Agricultural Productivity Program (WAAPP) and B Ordás a “Ramon y Cajal” contract from the Ministry of Economy and Competitiveness of Spain.


  1. Badu-Apraku Akinwale R, Franco J, Oyekunle M (2012) Assesment of reliability of secondary traits in selecting for improved grain yield in drought and low-nitrogen environments. Crop Sci 52:2050–2062. doi: 10.2135/cropsci2011.12.0629 CrossRefGoogle Scholar
  2. Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145. doi: 10.1007/BF00226242 CrossRefPubMedGoogle Scholar
  3. Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of crossed and F4 progeny from maize. Crop Sci 34:882–896. doi: 10.2135/cropsci1994.0011183X003400040010x CrossRefGoogle Scholar
  4. Belícuas PR, Aguiar AM, Bento DAV, Câmara TMM, de Souza Junior CL (2014) Inheritance of the stay-green trait in tropical maize. Euphytica 198:163–173. doi: 10.1007/s10681-014-1106-4 CrossRefGoogle Scholar
  5. Boer MP, Wright D, Feng L, Podlich W, Luo L, Cooper M, van Euwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-Environment interactions, with an example in maize. Genetics 177:1801–1813. doi: 10.1534/genetics.107.071068 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borrell AK, Mullet JE, George-Jaeggli B, Van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263. doi: 10.1093/jxb/eru232 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Câmara TMM (2006) Mapeamento de QTLs de caracteres relacionados à tolerância ao estresse hídrico em milho tropical. Doctoral thesis, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba. Accessed 26 Sep 2014
  8. Lee EA, Tollenaar M (2007) Physiological basis of successful breeding strategies for maize grain yield. Crop Sci 47:S202–S215. doi: 10.2135/cropsci2007.04.0010IPBS CrossRefGoogle Scholar
  9. Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284. doi: 10.1007/s10681-009-9966-8 CrossRefGoogle Scholar
  10. Liu YG, Whittier RF (1994) Rapid preparation of megabase plant DNA from nuclei in agarose plugs and microbeads. Nucleic Acids Res 22(11):2168–2169CrossRefGoogle Scholar
  11. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628. doi: 10.1007/s00122-002-0970-9 CrossRefPubMedGoogle Scholar
  12. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, SunderlandGoogle Scholar
  13. Ma BL, Dwyer LM (1998) Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant Soil 199:283–291. doi: 10.1023/A:1004397219723 CrossRefGoogle Scholar
  14. Malosetti M, Ribaut JM, Vargas M, Crossa J, Van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257. doi: 10.1007/s10681-007-9594-0 CrossRefGoogle Scholar
  15. Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. F Crop Res 124:93103. doi: 10.1016/j.fcr.2011.06.010 CrossRefGoogle Scholar
  16. Mihaljevic R, Utz HF, Melchinger AE (2004) Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci 44:114–124. doi: 10.2135/cropsci2004.1140 CrossRefGoogle Scholar
  17. Mikel MA (2008) Genetic diversity and improvement of contemporary proprietary North American dent corn. Crop Sci 48:1686–1695. doi: 10.2135/cropsci2008.01.0039 CrossRefGoogle Scholar
  18. Mikel MA (2011) Genetic composition of contemporary US commercial dent corn germplasm. Crop Sci 51:592–599. doi: 10.2135/cropsci2010.06.0332 CrossRefGoogle Scholar
  19. Mikel MA, Dudley JW (2006) Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46:1193–1205. doi: 10.2135/cropsci2005.10-0371 CrossRefGoogle Scholar
  20. Minitab Inc (2010) Chapter name, meet minitab, p 16Google Scholar
  21. Moore D, Dowhan D (2002) Purification and concentration of DNA from aqueous solutions. Curr Pr Mol Biol. doi: 10.1002/0471141755.pha03cs38 CrossRefGoogle Scholar
  22. Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize. Theor Appl Genet 110:92–105. doi: 10.1007/s00122-004-1781-y CrossRefPubMedGoogle Scholar
  23. Rama Reddy N, Ragiasalawada M, Sabbavarapy MN, Seetharam N, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genom 15:909. doi: 10.1186/1471-2164-15-909 CrossRefGoogle Scholar
  24. Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965–976. doi: 10.1007/s00425-006-0400-3 CrossRefPubMedGoogle Scholar
  25. Soderlund C, Nelson W, Shoemaker A, Paterson A (2006) SyMAP: a system for discovering and viewing syntenic regions of FPC maps. Genome Res 16:1159–1168. doi: 10.1101/gr.5396706 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337. doi: 10.1093/jexbot/51.suppl_1.329 CrossRefPubMedGoogle Scholar
  27. Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65:3889–3900. doi: 10.1093/jxb/eru037 CrossRefGoogle Scholar
  28. Thomas H, Smart CM (1993) Crops that stay green1. Ann Appl Biol 123:193–219. doi: 10.1111/j.1744-7348.1993.tb04086.x CrossRefGoogle Scholar
  29. Wang A, Li Y, Zhang C (2012) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256. doi: 10.4141/cjps2011-108 CrossRefGoogle Scholar
  30. Weir BS (1996) Genetic data analysis II, Editorial. Sinauer Associates, SunderlandGoogle Scholar
  31. Worku M, Bänziger M, Friesen D, Diallo AO, Horst WJ (2012) Nitrogen efficiency as related to dry matter partitioning and root system size in tropical mid-altitude maize hybrids under different levels of nitrogen stress. Field Crop Res 130:57–67. doi: 10.1016/j.fcr.2012.02.015 CrossRefGoogle Scholar
  32. Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y (2007) Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica 52:181–194 (ISSN 0025-6153)Google Scholar
  33. Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genet Genom 2:177–185. doi: 10.1007/s11295-006-0042-4 CrossRefGoogle Scholar
  34. Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62. doi: 10.1111/j.1439-0523.2008.01529.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Kante
    • 1
    • 2
  • P. Revilla
    • 1
  • M. De La Fuente
    • 1
  • M. Caicedo
    • 1
  • B. Ordás
    • 1
    Email author
  1. 1.Misión Biológica de Galicia (CSIC)PontevedraSpain
  2. 2.Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations