Advertisement

Euphytica

, Volume 207, Issue 2, pp 439–451 | Cite as

Genome-wide association-mapping for fruit quality traits in tomato

  • Jing Zhang
  • Jiantao Zhao
  • Yan Liang
  • Zhirong Zou
Article

Abstract

A diverse collection of 174 tomato plants was selected, including 123 accessions of cherry tomato (So lanum lycopersicum var. cerasiforme) and 51 accessions of heirloom cultivars (So lanum lycopersicum). Association-mapping for fruit nutritional and quality traits was conducted with 182 SSR using the mixed linear models. A total of 111 marker-trait associations (MTAs) (P < 0.005) were detected for ten measured traits. Most association loci were detected for fruit equatorial diameter, ascorbic acid and fruit weight, with 22, 22, 17 marker-trait associations, respectively. Co-localised quantitative trait loci (QTLs) and significant associations are compared, such as fw2.2, fw11.1, ED2a, brx2.1, PD3a, and PD9a, which validate this study. Moreover, we also compared previous genome-wide association studies and confirmed certain identified MTAs (e.g. CON30D-472, Z1707-10D) or genes, such as Solyc11g071840.1.1. Our results confirm some QTLs and highlight some new candidate chromosome regions with potential for further tomato fruit quality breeding.

Keywords

Tomato Fruit-quality traits Association-mapping Quantitative trait loci 

Notes

Acknowledgments

Thanks are due to Drs. Xu Shutu, Qingmei Guan and Yanxu Yi for technical support. We gratefully acknowledge the help provided by Xinli Huang who supplied the fruits used in the study. This work was supported by the National Agricultural Science Foundation [201203002 to Zou Z].

Supplementary material

10681_2015_1567_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (doc 38 kb)
10681_2015_1567_MOESM2_ESM.xls (27 kb)
Supplementary material 2 (xls 27 kb)
10681_2015_1567_MOESM3_ESM.xls (102 kb)
Supplementary material 3 (xls 101 kb)
10681_2015_1567_MOESM4_ESM.xls (69 kb)
Supplementary material 4 (xls 69 kb)

References

  1. Ashrafi H, Kinkade MP, Merk HL, Foolad MR (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549–567CrossRefGoogle Scholar
  2. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng DZ, Platt A, Tarone AM, Hu TT et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631CrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  4. Berloo R, Zhu A, Ursem R, Verbakel H, Gort G, van Eeuwijk FA (2008) Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor Appl Genet 117:89–101CrossRefGoogle Scholar
  5. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  8. Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098CrossRefGoogle Scholar
  9. Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68:2342–2350CrossRefGoogle Scholar
  10. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685CrossRefGoogle Scholar
  11. Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. p impinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299CrossRefGoogle Scholar
  12. Chen YS (2013) Dissection of agronomic traits in crops by association mapping. In: Lübberstedt T (ed) Diagnostics in plant breeding. Springer, Dordrecht, pp 119–142CrossRefGoogle Scholar
  13. Ersoz ES, Yu J, Buckler ES (2007) Application of linkage mapping in crop plants. Genomics Approaches Platforms 1:97–119Google Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  15. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefGoogle Scholar
  16. Food and Agriculture Organization of the United Nations (2015) Statistical pocketbook world food and agricultureGoogle Scholar
  17. Fulton TM, Chunwingse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:07–209CrossRefGoogle Scholar
  18. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894CrossRefGoogle Scholar
  19. Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefGoogle Scholar
  20. Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, Pellegrini N (2007) Antioxidant nutritional quality of tomato. Mol Nutr Food Res 51:609–617CrossRefGoogle Scholar
  21. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  22. Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. e sculentum and L. p impinellifolium. Theor Appl Genet 92:957–965CrossRefGoogle Scholar
  23. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefGoogle Scholar
  24. Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × Lycopersicon cheesmanii cross. Theor Appl Genet 90:925–932CrossRefGoogle Scholar
  25. Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165CrossRefGoogle Scholar
  26. Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6Google Scholar
  27. Kotíková Z, Lachman J, Hejtmánková A, Hejtmánková K (2011) Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT Food Sci Technol 44:1703–1710CrossRefGoogle Scholar
  28. Kumar S, Rowan D, Hunt M, Chagné D, Whitworth C, Souleyre E (2015) Genome-wide scans reveal genetic architecture of apple flavour volatiles. Mol Breed 35Google Scholar
  29. Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru J, Ebana K, Yano M, Saito K (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13–23CrossRefGoogle Scholar
  30. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:57–669CrossRefGoogle Scholar
  31. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448PubMedGoogle Scholar
  32. Muños S, Ranc N, Botton E, Berard A, Roll S, Duffe P, Carretero Y, LePaslier MC, Delalande C, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near Wuschel. Plant Physiol 156:2244–2254CrossRefGoogle Scholar
  33. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379PubMedPubMedCentralGoogle Scholar
  34. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato-comparison across species, generations, and environments. Genetics 127:181–197PubMedPubMedCentralGoogle Scholar
  35. Pers TH, Karjalainen JM, Chan Y, Westra H, Wood AR, Yang J, Lui JC, Vedantam S, Gustafsson S, Esko T, Frayling T, Speliotes EK, Boehnke M, Raychaudhuri S, Fehrmann RSN, Hirschhorn JN, Franke L (2015) Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 6:5890CrossRefGoogle Scholar
  36. Platt A, Vilhjalmsson BJ, Nordborg M (2010) Conditions under which genome-wide association studies will be positively misleading. Genetics 186:1045–1052CrossRefGoogle Scholar
  37. Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11:213–216CrossRefGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  39. Ranc N, Munos S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. c erasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130CrossRefGoogle Scholar
  40. Ranc N, Munos S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 (Bethesda) 2:853–864CrossRefGoogle Scholar
  41. Rick CM (1976) Tomato, Lycopersicon e sculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group, London, pp 268–273Google Scholar
  42. Ruggieri V, Francese G, Sacco A, Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337CrossRefGoogle Scholar
  43. Saidou AA, Thuillet AC, Couderc M, Mariac C, Vigouroux Y (2014) Association studies including genotype by environment interactions: prospects and limits. BMC Genet 15:3CrossRefGoogle Scholar
  44. Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272CrossRefGoogle Scholar
  45. Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genet Mol Res 11:3696–3710CrossRefGoogle Scholar
  46. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831CrossRefGoogle Scholar
  47. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) 0 Advanced backcross QTL analysis in a cross between an elite processing. Theor Appl Genet 92:213–224CrossRefGoogle Scholar
  48. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in Xowering time. Nat Genet 28:286–289CrossRefGoogle Scholar
  49. Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB, Wang D (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:809CrossRefGoogle Scholar
  50. Xu J, Ranc N, Muños S, Rolland S, Bouchet J, Desplat N, Le Paslier M, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581CrossRefGoogle Scholar
  51. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefGoogle Scholar
  52. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory of Protected Horticultural Engineering in NorthwestMinistry of AgricultureYanglingChina

Personalised recommendations