Skip to main content
Log in

Quantitative trait locus analysis of wheat quality traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Milling and baking quality traits in wheat (Triticum aestivum L.) were studied by QTL analysis in the ITMI population, a set of 114 recombinant inbred lines (RILs) generated from a synthetic-hexaploid (W7985) × bread-wheat (Opata 85) cross. Grain from RILs grown in U.S., French, and Mexican wheat-growing regions was assayed for kernel-texture traits, protein concentration and quality, and dough strength and mixing traits. Only kernel-texture traits showed similar genetic control in all environments, with Opata ha alleles at the hardness locus Ha on chromosome arm 5DS increasing grain hardness, alkaline water retention capacity, and flour yield. Dough strength was most strongly influenced by Opata alleles at 5DS loci near or identical to Ha. Grain protein concentration was associated not with high-molecular-weight glutenin loci but most consistently with the Gli-D2 gliadin locus on chromosome arm 6DS. In Mexican-grown material, a 2DS locus near photoperiod-sensitivity gene Ppd1 accounted for 25% of variation in protein, with the ppd1-coupled allele associated with higher (1.1%) protein concentration. Mixogram traits showed most influence from chromosomal regions containing gliadin or low-molecular-weight glutenin loci on chromosome arms 1AS, 1BS, and 6DS, with the synthetic hexaploid contributing favorable alleles.

Some RI lines showed quality values consistently superior to those of the parental material, suggesting the potential of further evaluating new combinations of alleles from diploid and tetraploid relatives, especially alleles of known storage proteins, for improvement of quality traits in wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AWRC:

alkaline water retention capacity

H(L)MW:

high(low)-molecular-weight

ITMI:

International Triticeae Mapping Initiative

PAGE:

polyacrylamide gel electrophoresis

RIL:

recombinant inbred line

RFLP:

restriction fragment length polymorphism

RI:

recombinant inbred

SDS:

sodium dodecyl sulfate

NIR:

near-infrared reflectance

SE:

softness equivalent

References

  • AACC. 1995. Approved Methods of the American Association of Cereal Chemists, 9th ed. The Association, St. Paul, Minnesota.

    Google Scholar 

  • Bassett, L.M., R.E. Allan & G.L. Rubenthaler. 1989. Genotype × environment interactions on soft white winter wheat quality. Agron J 81: 955–960.

    Article  Google Scholar 

  • Blanco, A., A. Pasqualone, A. Troccoli, N. Di Fonzo & R. Simeone. 2002. Detection of grain content QTLs across environments in tetraploid wheat. Plant Mol Biol 48: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Börner, A., E. Schumann, A. Fürste, H. Cöster, B. Leithold, M.S. Röder & W.E. Weber. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (triticum aestivum l.). Theor Appl Genet 105: 921–936.

    Article  PubMed  Google Scholar 

  • Branlard, G. & M. Dardevet. 1985a. Diversity of grain proteins and bread wheat quality I. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci 3: 329–344.

    CAS  Google Scholar 

  • Branlard, G. & M. Dardevet. 1985b. Diversity of grain protein and bread wheat quality II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J Cereal Sci 3: 345–354.

    CAS  Google Scholar 

  • Campbell, K.G., C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, G. Hareland, R.G. Fulcher, M.E. Sorrells & P.L. Finney. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39: 1184–1195.

    Article  CAS  Google Scholar 

  • Campbell, K.G., P.L. Finney, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, D. Siritunga, J. Zhu, C. Gendre, C. Roué, A. Vérel & M.E. Sorrells. 2001. Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41: 1275–1285.

    Article  CAS  Google Scholar 

  • Campbell, W.P., C.W. Wrigley, P.J. Cressey & C.R. Slack. 1987. Statistical correlations between quality attributes and grain-protein composition for 71 hexaploid wheats used as breeding parents. Cereal Chem 64: 293–299.

    CAS  Google Scholar 

  • Carrillo, J.M., M. Rousset, C.O. Qualset & D.D. Kasarda. 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 1. Grain yield and quality prediction tests. Theor Appl Genet 79: 321–330.

    Article  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  CAS  Google Scholar 

  • Cressey, P.J., W.P. Campbell, C.W. Wrigley & W.B. Griffin. 1987. Statistical correlations between quality attributes and grain-protein composition for 60 advanced lines of crossbred wheat. Cereal Chem 64: 299–301.

    CAS  Google Scholar 

  • du Cros, D.L., L.R. Joppa & C.W. Wrigley. 1983. Two-dimensional analysis of gliadin proteins associated with quality in durum wheat: chromosomal location of genes for their synthesis. Theor Appl Genet 66: 297–302.

    Article  Google Scholar 

  • Dvorak, J. & K.C. Chen. 1984. Distribution of nonstructural variation between wheat cultivars along chromosome arm 6Bp: evidence from the linkage map and physical map of the arm. Genetics 106: 325–333.

    PubMed  CAS  Google Scholar 

  • Finney, P.L. & L.C. Andrews. 1986. Revised microtesting for soft wheat quality evaluation. Cereal Chem 63: 177–182.

    Google Scholar 

  • Gaines, C.S., Kassuba, A. & Finney, P.L. 1996. Using the wire-cut and sugar-snap formula cookie test baking methods to evaluate distinctive soft wheat flour sets: implications for quality testing. Cereal Foods World 41: 155–160.

    Google Scholar 

  • Groos, C., N. Robert, E. Bervas & G. Charmet. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106: 1032–1040.

    PubMed  CAS  Google Scholar 

  • Guttieri, M.J., C. Becker & E.J. Souza. 2004. Application of wheat meal solvent retention capacity tests within soft wheat breeding populations. Cereal Chem 81: 261–266.

    CAS  Google Scholar 

  • Igrejas, G., P. Leroy, G. Charmet, T. Gaborit, D. Marion & G.Branlard. 2002. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106: 19–27.

    PubMed  CAS  Google Scholar 

  • Kearsey, M.J. & A.G.L. Farquhar. 1998. QTL analysis in plants; where are we now? Heredity 80: 137–142.

    Article  PubMed  Google Scholar 

  • Keim, D.L., J.R. Welsh & R.L. McConnell. 1973. Inheritance of photoperiodic heading response in winter and spring cultivars of bread wheat. Can J Plant Sci 53: 247–250.

    Article  Google Scholar 

  • Kerber, E.R. & K.H. Tipples. 1969. Effects of the D genome on milling and baking properties of wheat. Can J Plant Sci 49: 255–263.

    Google Scholar 

  • Konzak, C.F. 1977. Genetic control of the content, amino acid composition, and processing properties of proteins in wheat. Adv Genet 19: 407–582.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.L., J.C. Nelson, C.Y. Chu, L.H. Shi, S.H. Huang & D.J. Liu. 2002. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125: 357–365

    Article  CAS  Google Scholar 

  • Mansur, L.M., C.O. Qualset, D.D. Kasarda & R. Morris. 1990. Effects of ‘Cheyenne’ chromosomes on milling & baking quality in ‘Chinese Spring’ wheat in relation to glutenin & gliadin storage proteins. Crop Sci 30: 593–602.

    Article  Google Scholar 

  • Marino, C.L., J.C. Nelson, Y.H. Lu, M.E. Sorrells, C.R. Lopes & G.E. Hart. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359–366.

    CAS  PubMed  Google Scholar 

  • Martin, J.M., R.C. Frohberg, C.F. Morris, L.E. Talbert & M.J. Giroux. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41: 228–234.

    Article  CAS  Google Scholar 

  • McGuire, C.F. & F.H. McNeal. 1974. Quality response of 10 hard red spring wheat cultivars to 25 environments. Crop Sci 14: 175–178.

    Google Scholar 

  • McIntosh, R.A., Y. Yamazaki, K.M. Devos, J. Dubcovsky, W.J. Rogers & R. Appels. 2003. Catalogue of Gene Symbols for Wheat. http://wheat.pw.usda.gov/ggpages/wgc/2003/

  • Mingeot, D. & J.M Jacquemin. 1999. Mapping of RFLP probes characterized for their polymorphism on wheat. Theor Appl Genet 98: 1132–1137

    Article  CAS  Google Scholar 

  • Moonen, J.H.E., A. Scheepstra & A. Graveland. 1983. The positive effect of the high molecular weight subunits 3+10 and 2* of glutenin on the bread-making quality of wheat cultivars. Euphytica 32: 735–742.

    Article  Google Scholar 

  • Murphy, J.P., C.A. Griffey, P.L. Finney & S. Leath. 1997. Agronomic and grain quality evaluations of Triticum aestivum × Aegilops tauschii backcross populations. Crop Sci 37: 1960–1965.

    Article  Google Scholar 

  • Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, M. Merlino, M. Atkinson & P. Leroy. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38: 517–524.

    Google Scholar 

  • Nelson, J.C., M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson. 1995b. Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731.

    CAS  Google Scholar 

  • Nieto-Taladriz, M.T., M.R. Perretant & M. Rousset. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet 88: 81–88.

    Article  CAS  Google Scholar 

  • Olmos, S., A. Distelfeld, O. Chicaiza, A.R. Schlatter, T. Fahima, V. Echenique & J. Dubcovsky. 2003. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107: 1243–1251.

    Article  PubMed  CAS  Google Scholar 

  • Payne, P.I., L.M. Jackson, E.A. Holt & C.N. Law. 1984. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Phil Trans Royal Soc Lond Ser B 304: 359–371.

    CAS  Google Scholar 

  • Payne, P.I., K. Corfield, L.M. Holt & J.A. Blackman. 1981. Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in wheats of related pedigree. J Sci Food Agric 32: 51–60.

    CAS  Google Scholar 

  • Payne, P.I., J.A. Seekings, A.J. Worland, M.G. Jarvis & L.M. Holt. 1987. Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat: analysis of F5 progeny from Chinese Spring × Chinese Spring Hope 1A. J Cereal Sci 6: 103–118.

    Article  Google Scholar 

  • Peña, R.J., A. Amaya, S. Rajaram & A. Mujeeb-Kazi. 1990. Variation in quality characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci 12: 105–112.

    Google Scholar 

  • Perretant, M.R., T. Cadalen, G. Charmet, P. Sourdille, P. Nicolas, C. Boeuf, M.H. Tixier, G. Branlard, S. Bernard & M. Bernard. 2000. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100: 1167–1175.

    Article  CAS  Google Scholar 

  • Pomeranz, Y. & P.C. Williams. 1990. Wheat hardness: its genetic, structural and biochemical background, measurements and significance. In: Y. Pomeranz (Ed.), Advances in Cereal Science and Technology, 10: 471–544. AACC, St. Paul.

    Google Scholar 

  • Prasad, M., N. Kumar, P.L. Kulwal, M.S. Röder, H.S. Balyan, H.S. Dhaliwal & P.K. Gupta. 2003. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106: 659–667.

    PubMed  CAS  Google Scholar 

  • Pugsley, A.T. 1983. The impact of plant physiology on Australian wheat breeding. Euphytica 32: 743–748.

    Article  Google Scholar 

  • Quick, J.S. & R.D. Crawford. 1983. Bread baking potential of new durum wheat cultivars. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genet. Symp., pp. 851–856. Kyoto Univ., Kyoto, Japan.

    Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal. 1998. A microsatellite map of wheat. Genetics 149: 2007–2023

    PubMed  Google Scholar 

  • Rousset, M., J.M. Carrillo, C.O. Qualset & D.D. Kasarda. 1992. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 2. Milling and bread-baking quality. Theor Appl Genet 83: 403–412.

    Article  Google Scholar 

  • Schön, C.C, H.F. Utz, S. Groh, B. Truberg, S. Openshaw & A.E. Melchinger. 2004. Quantitative trait locus mapping based on resampling in a vast testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167: 485–498.

    Article  PubMed  Google Scholar 

  • Sourdille, P., M.R. Perretant, G. Charmet, P. Leroy, M.F. Gautier, P. Joudrier, J.C. Nelson, M.E. Sorrells & M. Bernard. 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93: 580–586.

    CAS  Google Scholar 

  • Sourdille, P., M.H. Tixier, G. Charmet, G. Gay, T. Cadalen, S. Bernard & M. Bernard. 2000. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6: 247–255

    Article  CAS  Google Scholar 

  • Symes, K.J. 1965. The inheritance of grain hardness in wheat as measured by the particle-size index. Aust J Agric Res 16: 113–123.

    Article  Google Scholar 

  • Van Deynze, A.E., J. Dubcovsky, K.S. Gill, J.C. Nelson, M.E. Sorrells, J. Dvorak, B.S. Gill, E.S. Lagudah, S.R. McCouch & R. Appels. 1995. Molecular-genetic maps for chromosome 1 in Triticeae species and their relation to chromosomes in rice and oats. Genome 38: 47–59.

    Google Scholar 

  • Walker, A.E. & C.E. Walker. 1992. Documentation and Users Instructions for MIXSMART (Registered). Computerized Data Acquisition and Analysis for the Mixograph. National Mfg., Lincoln, Nebraska.

    Google Scholar 

  • Wang, S., C.J. Basten & Z.-B. Zeng. 2004. Windows QTL Cartographer v2.0. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.

  • Weegels, P.L., R.J. Hamer & J.D. Schofield. 1996. Critical review: Functional properties of wheat glutenin. J Cereal Sci 23: 1–18.

    Article  CAS  Google Scholar 

  • William, M.D.H.M., R.J. Peña & A. Mujeeb-Kazi. 1993. Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet 87: 257–263.

    Article  CAS  Google Scholar 

  • Worland, A.J., S. Petrovic & C.N. Law. 1988. Genetic analysis of chromosome 2D of wheat. II. The importance of this chromosome to Yugoslavian varieties. Plant Breed 100: 247–259.

    Article  Google Scholar 

  • Wrigley, C.W. & K.W. Shepherd. 1973. Electrofocusing of grain proteins from wheat genotypes. Ann NY Acad Sci 209: 154–162.

    PubMed  CAS  Google Scholar 

  • Yamazaki, W.T., J.R. Donelson & L.W. Briggle. 1968. Microtests for soft wheat quality evaluation. Crop Sci 8: 199–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution number 06-77J from the Kansas Agricultural Experimental Station.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, J.C., Andreescu, C., Breseghello, F. et al. Quantitative trait locus analysis of wheat quality traits. Euphytica 149, 145–159 (2006). https://doi.org/10.1007/s10681-005-9062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9062-7

Keywords

Navigation