The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark

  • Kari-Anne Lyng
  • Lise Skovsgaard
  • Henrik Klinge JacobsenEmail author
  • Ole Jørgen Hanssen


This paper studies biogas value chains and the effect from various economic support instruments on these value chains. This is done by comparing two European countries that are quite similar in size, income levels and environmental ambitions, but which are using very different instruments to support biogas development. Norway provides investment support combined with support for inputs, while Danish support is focused on the biogas output side. The aim of the comparison is to clarify whether the policies in use have affected the design of biogas value chains such that they are determined by national support and are not viable under alternative support structures. Based on the findings, possible modifications of national support and other biogas regulation policy are suggested. The comparative study assesses the costs and income of an exemplary Norwegian value chain and a Danish value chain. The cases are evaluated by assessing the economic consequences of implementing the Danish instruments for a Norwegian value chain and vice versa. We find that structural and regulatory conditions have a large impact on the configuration of the value chains. The Danish value chain in Norwegian settings results in a large deficit (− 12.7€/tonne), while it was profitable in Denmark (+ 4.9€/tonne). The same is observed for the Norwegian value chain, but to a lesser extent. The policy implication of end-use support in Denmark is large-scale plants, maximising the output through co-digestion of manure and high-yield substrates, while avoiding losses. Investment support in Norway has increased biogas production from organic waste with less emphasis on efficient gas usage, while input support regarding manure has led to an increase in the usage of manure as substrate.


Biogas Environmental policy Regulation Value chain 



The authors acknowledge the financial support from two projects: The BioValueChain project funded by the Norwegian Research council through the EnergiX programme (Grant Number: 228821) and the project “Optimisation of value chains for biogas production in Denmark” (BioChain) funded by the Danish Council for Strategic Research (DSF) (Grant Number: 12-132631). The authors have the full and sole responsibility for the content of this publication.


  1. Brudermann, T., Mitterhuber, C., & Posch, A. (2015). Agricultural biogas plants: A systematic analysis of strengths, weaknesses, opportunities and threats. Energy Policy, 76, 107–111.CrossRefGoogle Scholar
  2. Carrosio, G. (2013). Energy production from biogas in the Italian countryside: Policies and organizational models. Energy Policy, 63, 3–9. Scholar
  3. Clercq, D. De, Wen, Z., Gottfried, O., Schmidt, F., & Fei, F. (2017). A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion., 79(March 2016), 204–221.Google Scholar
  4. Danish Energy Agency. (2017a). Energistyrelsens hjemmeside om Biobrændstoffer (DEA homepage on biofuels).
  5. Danish Energy Agency. (2017b). Confidential data on biogas production.Google Scholar
  6. Danish Energy Agency. (2017d). Støtte til biogas (support for biogas). 2017.
  7. Danish Government. (2009a). Aftale om Grøn Vaekst (Green growth agreement).Google Scholar
  8. Danish Government. (2009b). LOV nr 468 af 12/06/2009, Lov om bæredygtige biobrændstoffer (act on sustainable biofuels). Denmark.
  9. Danish Government. (2012). Energiaftalen 2012 (Energy agreement_2012).Google Scholar
  10. Danish Government. (2016). LOV nr 1754 af 27/12/2016 lovændring til biobrændstofloven (act on changes in the act on biofuels).Google Scholar
  11. Danish Government. (2017). Husdyrsgødningsbekendtgørelsen (regulation on manure usage in agriculture)., Pub. L. No. BEK nr 374 af 19/04/2017.Google Scholar
  12. Danish Ministry of Climate. (2013). Regeringens Klimaplan - på vej mod et samfund uden drivhusgasser (the Governmental climate plan). The homepage of the ministry.Google Scholar
  13. Danish Ministry of Environment. (2013). Fakta om Ressourcestrategien (Facts on the Danish Ressource strategy).Google Scholar
  14. Danish Ministry of Environment. (2016). Kortlægning af kommunale affaldsordninger for husholdningsaffald (Mapping of municipal waste collection schemes for household waste).
  15. Delzeit, R., & Kellner, U. (2013). The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass and Bioenergy, 52, 43–53.CrossRefGoogle Scholar
  16. Dubgaard, A., & Jacobsen, B. H. (2013). Analyse af omkostningseffektiviteten ved drivhusgasreducerende tiltag i relation til landbruget (analysis of cost efficiency of carbon reducing policies in agriculture).Google Scholar
  17. (2017). Energinet.dks hjemmeside støtte til biogas (Danish TSO support for biogas).
  18. Energistyrelsen. (2015). Bekendtgørelse om bæredygtig produktion af biogas (BEK nr 301 af 25/03/2015) (statue on sustainable biogas production).
  19. EurObserv’ER. (2014). Biogas Barometer.
  20. European Comission. (2017). Circular economy strategy—Environment—European Commission. Accessed 7 Aug 2017.
  21. European Commission. (2014). Regional bioeconomy profile Central Denmark (DK) Structure of the Bioeconomy Institutional System.Google Scholar
  22. European Parliament. (2009a). Brændstofkvalitetsdirektivet (European Directive on fuels_DIR2009/30/EF).Google Scholar
  23. European Parliament. (2009b). VE direktivet (European Directive on renewables_DIR2009/28/EF)., Den Europæiske Unions Tidende 16–62.Google Scholar
  24. Eurostat. (2017). Electricity price statistics - Statistics Explained. Accessed 7 Aug 2017.
  25. Eurostat. (2018). Energy Data.
  26. Eurostat - Statistics Explained. (2018). Table 5-Share of renewable energy sources in transport 2004-2016.
  27. Fevolden, A. M., & Klitkou, A. (2017). A fuel too far? Technology, innovation, and transition in failed biofuel development in Norway. Energy Research and Social Science, 23, 125–135. Scholar
  28. FOR-2004-06-01-930. (2004). Forskrift om gjenvinning og behandling av avfall (avfallsforskriften) - National waste regulation. Accessed 8 June 2017
  29. FOR-2014-12-19-1815. (2015). Forskrift om tilskudd for levering av husdyrgjødsel til biogassanlegg. (Regulation on supply of manure to biogas plants).Google Scholar
  30. FOR-2016-09-14-1064. (2016). Forskrift om animalske biprodukter som ikke er beregnet på konsum (animaliebiproduktforskriften). (Regulation on animal coproducts.).
  31. Grant, W. D., & Lawrence, T. M. (2014). A simplified method for the design and sizing of anaerobic digestion systems for smaller farms. Environment, Development and Sustainability, 16(2), 345–360. Scholar
  32. Hanssen, O. J., Skogesal, O., Møller, H., Vinju, E., & Syversen, F. (2013). Kunnskap om matsvinn fra norske husholdninger. Rapport til miljødirektoratet. Østfoldforskning AS. OR, 38, 13.Google Scholar
  33. Harder, B. (2016). Vi er midt i biogassens største vækstår (We are in the middle of the highest growth of biogas), pp. 2016–2017.Google Scholar
  34. Hiranandani, V. (2010). Sustainable agriculture in Canada and Cuba: A comparison. Environment, Development and Sustainability, 12(5), 763–775. Scholar
  35. Hjort-Gregersen, K., Blandford, D., & Gooch, C. A. (2011). Biogas from farm-based biomass sources developments in Europe and the US. EuroChoices, 10(3), 18–23. Scholar
  36. Huttunen, S., Kivimaa, P., & Virkamäki, V. (2014a). The need for policy coherence to trigger a transition to biogas production. Environmental Innovation and Societal Transitions, 12, 14–30.CrossRefGoogle Scholar
  37. Huttunen, S., Manninen, K., & Leskinen, P. (2014b). Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. Journal of Cleaner Production, 80, 5–16. Scholar
  38. IEA Bioenergy. (2014). Task37 Biogas Country Overview (CountryReports).Google Scholar
  39. Jacobsen, B. H. (2014). The economics of biogas in Denmark. International Journal of Agricultural Management, 3(3), 135–144. Scholar
  40. Jacobsen, B. H., Laugesen, F. M., Dubgaard, A., & Bojesen, M. (2013). Biogasproduktion i DanmarkVurderinger af drifts- og samfundsøkonomi, in English: “Biogas production in Denmark - Assessments of private and socio economy.” Institut for fødevarer- og ressource økonomi. IFRO Rapport 220, Fredriksberg.Google Scholar
  41. Jensen, I. G., Münster, M., & Pisinger, D. (2017). Optimizing the Supply Chain of a Biogas Plant from Farmers to Energy Consumers Including Mass and Energy Losses. European Journal of Operational Research, In Press, 1–33.Google Scholar
  42. Jørgensen, P. J. (2013). Praktisk anvendelse af dybstrøelse som substrat på biogasanlægkommende som eksisterende (Practical use of deep litter as substrate on biogas plants - future and existing). Planenergi.Google Scholar
  43. Lånke, A. F., Berg, H. Ø., Melbye, A., Helland, L., & Solberg, F. E. (2016). Markedsrapport. Biogass i Oslofjord-regionen. (Market report. Biogas in the Oslofjord region.).Google Scholar
  44. Lantz, M., Svensson, M., Björnsson, L., & Börjesson, P. (2007). The prospects for an expansion of biogas systems in Sweden—Incentives, barriers and potentials. Energy Policy, 35(3), 1830–1843.CrossRefGoogle Scholar
  45. Larsson, M., Grönkvist, S., & Alvfors, P. (2016). Upgraded biogas for transport in Sweden – effects of policy instruments on production, infrastructure deployment and vehicle sales. Journal of Cleaner Production, 112, 3774–3784. Scholar
  46. Lukehurst, C., Frost, P., & Seadi, T. Al. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy.
  47. Lybaek, R., Christensen, T. B., & Kjaer, T. (2013). Governing innovation for sustainable development in the Danish Biogas Sector: A historical overview and analysis of innovation. Sustainable Development, 21(3), 171–182.CrossRefGoogle Scholar
  48. Lyng, K. A., Stensgård, A. E., Hanssen, O. J., & Modahl, I. S. (2018). Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. Journal of Cleaner Production, 182, 737–745. Scholar
  49. Måge, J. (2015). Status biogass in Norge 2015. Presentation held at bioseminar arranged by Waste management Norway, September 2015.Google Scholar
  50. Martinsen, J. (Mepex). (2012). Økt utnyttelse av ressursene i våtorganisk avfall.Google Scholar
  51. Miljøministeriet. (2006). Bekendtgørelse om anvendelse af affald til jordbrugsformål (Slambekendtgørelsen) (Statute on the usage of waste on soil).
  52. Ministry of Finance. (2016). Avgiftssatser 2017 (Fees in 2017). Accessed 7 Aug 2017
  53. Nedland, K. T., & Ohr, K. (2010). Utvikling av biogass i Norge. Forprosjekt. (Development of biogas in Norway.) Avfall Norge-Rapport nr 3/2010. Asplan Viak AS. Google Scholar
  54. Norwegian Climate and Pollution Agency. (2013). Underlagsmateriale til tverrsektoriell biogass-strategi (Background report for the national biogas strategy).Google Scholar
  55. Norwegian Ministry of Climate and Environment. (2014). National cross sectoral biogas strategy (Nasjonal tverrsektoriell biogasstrategi). Google Scholar
  56. OECD. (2016). Price level indicators. Price level indices.
  57. Olsson, L., & Fallde, M. (2014). Waste(d) potential: a socio-technical analysis of biogas production and use in Sweden. Journal of Cleaner Production. Scholar
  58. Poeschl, M., Ward, S., & Owende, P. (2010). Prospects for expanded utilization of biogas in Germany. Renewable and Sustainable Energy Reviews, 14(7), 1782–1797. Scholar
  59. Raadal, H. L., Schakenda, V., & Morken, J. (2008). Potensialstudie for Biogass i Norge. Study on the biogas potential in Norway. Østfoldforskning, OR 21.08. Google Scholar
  60. Raven, R. P. J. M., & Gregersen, K. H. (2007). Biogas plants in Denmark: Successes and setbacks. Renewable and Sustainable Energy Reviews. Scholar
  61. Shahzad, A., & Hanif, S. (2014). Techno-economic feasibility of biogas generation in Attari village, Ferozepur road, Lahore. Environment, Development and Sustainability. Scholar
  62. Skovsgaard, L., & Jacobsen, H. K. (2017). Economies of scale in biogas production and the significance of flexible regulation. Energy Policy, 101, 77–89. Scholar
  63. Skovsgaard, L., & Jensen, I. G. (2018). Recent trends in biogas value chains explained using cooperative game theory. Energy Economics, 74, 503–522. Scholar
  64. Statistics Denmark. (2017). BY2: FOLKETAL 1. JANUAR EFTER KOMMUNE m.m (population with regards to municipality).
  65. Statistics Norway. (2016a). Production and consumption of energy, energy balance, 2015, preliminary figures.Google Scholar
  66. Statistics Norway. (2016b). Production and consumption of energy, energy balance, 2014-2015, final figures.Google Scholar
  67. Statistics Norway. (2017a). Norwegian waste statistics. Waste in Norway by treatment and material 2015.
  68. Statistics Norway. (2017b). Statistics on energy use for transport purposes in Norway.
  69. The Norwegian Department of Agriculture and Food. (2009). St. meld. Nr. 39. (20082009) Klimautfordringenelandbruket en del av løsningen. White Paper, agricultural sector. Google Scholar
  70. Walla, C., & Schneeberger, W. (2008). The optimal size for biogas plants. Biomass and Bioenergy, 32, 551–557. Scholar
  71. Wirth, S., Markard, J., Truffer, B., & Rohracher, H. (2013). Informal institutions matter: Professional culture and the development of biogas technology. Environmental Innovation and Societal Transitions, 8, 20–41. Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Ostfold ResearchKråkerøyNorway
  2. 2.NMBU, Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
  3. 3.DTU Management, Sustainability DivisionTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations