Advertisement

Interaction of toluidine blue dye with heptamolybdate: UV–visible and ultrafiltration study

  • Malak KahloulEmail author
  • Selim Mahfoudhi
  • Jalila Chekir
  • Amor Hafiane
Article
  • 16 Downloads

Abstract

The present work represents the first attempt to apply a polyoxometalates (POMs) type heptamolybdate [Mo7O24]6− as a complexing agent for the removal of toluidine blue (TB) dye by ultrafiltration. Before ultrafiltration study, the interaction between heptamolybdate and dye was investigated using spectrophotometry UV–visible. It was shown that a metachromatic complex dye/POMs type 1:6 was formed with a blue shift from 623 to 550 nm indicating the formation of dye H-aggregates. The ultrafiltration process shows that the addition of heptamolybdate to dye solution greatly improved TB retention from 10 to 97%. The heptamolybdate concentration (0–1 mM), NaCl concentration (0.001–1500 mM), CTAB concentration (0.001–10 mM), pH (2–12) and applied pressure ∆P (2–4 bar) on the dye retention and permeate flux have been investigated. A 25 full factorial design shows that the main influenced factors are CTAB surfactant following by heptamolybdate and salt concentrations.

Graphic abstract

Schematic of the process of TB removal by PAUF method

Keywords

Ultrafiltration membrane Complexation Spectrophotometric study Heptamolybdate Toluidine blue 

Notes

Acknowledgements

The authors wish to acknowledge the Head of the Department of chemistry and laboratory of water, membrane and environmental biotechnology (LEMBE) CERTE of Tunisia and all who supported and assisted in conducting this study.

References

  1. Ben Fradj, A., Ben Hamouda, S., Ouni, H., et al. (2014a). Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultra filtration. Separation and Purification Technology, 133, 76–81.CrossRefGoogle Scholar
  2. Ben Fradj, A., Lafi, R., Ben Hamouda, S., et al. (2014b). Effect of chemical parameters on the interaction between cationic dyes and poly(acrylic acid). Journal of Photochemistry and Photobiology A: Chemistry, 284, 49–54.CrossRefGoogle Scholar
  3. Ben Fradj, A., Lafi, R., Gzara, L., et al. (2014c). Spectrophotometric study of the interaction of toluidine blue with poly (ammonium acrylate). Journal of Molecular Liquids, 194, 110–114.CrossRefGoogle Scholar
  4. Chen, S., Di, Y., Li, Y., et al. (2019). Removal of RhB from aqueous solutions by two polyoxometalates adsorbents. Journal of Inorganic and Organometallic Polymers and Materials., 29(3), 1049–1055.CrossRefGoogle Scholar
  5. D’Ilario, L., & Martinelli, A. (2006). Toluidine blue: Aggregation properties and structural aspects. Modelling and Simulation in Materials Science and Engineering, 14, 581–595.CrossRefGoogle Scholar
  6. Dasgupta, J., Singh, M., Sikder, J., et al. (2015). Ecotoxicology and environmental safety response surface-optimized removal of reactive red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultra filtration. Ecotoxicology and Environmental Safety, 121, 271–278.CrossRefGoogle Scholar
  7. Fersi, C., Gzara, L., & Dhahbi, M. (2005). Treatment of textile effluents by membrane technologies. Desalination, 185, 399–409.CrossRefGoogle Scholar
  8. Hammami, M., Dorra Ennigrou, J., Naifer, K. H., & Ferid, M. (2016). Recovery of Samarium (III) from aqueous solutions by poly(sodium 4-styrenesulfonate) assisted-ultrafiltratio. Environmental Progress and Sustainable Energy, 00, 1–7.Google Scholar
  9. Hammami, M., Ennigrou, D. J., Horchani-Naifer, K., & Ferid, M. (2018). Comparative study of neodymium recovery from aqueous solutions by polyelectrolytes assisted-ultrafiltration. Korean Journal of Chemical Engineering, 35, 518–525.CrossRefGoogle Scholar
  10. Huang, J. H., Zhou, C. F., Zeng, G. M., et al. (2010). Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. Journal of Membrane Science, 365, 138–144.CrossRefGoogle Scholar
  11. Hueber, D., Hoffmann, M., Louis, B., Pale, P., & Blanc, A. (2014). Inorganic—organic heteropolyacid—Gold (I) hybrids : Structures and catalytic applications. Chemistry–A European Journal, 20(14), 3903–3907.CrossRefGoogle Scholar
  12. Israel, L., Beyene, M., Chekol, M., & Upadhyay, R. K. (2013). Spectrophotometric study of stability constants of Cr (III), Ni (II) and Cu (II) complexes with a schiff base in different solvents. Oriental Journal of Chemistry, 29, 1111–1114.CrossRefGoogle Scholar
  13. Juang, R., & Shiau, R. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration., 165, 159–167.Google Scholar
  14. Kaczmarek, A. M., Van Hecke, K., & Van Deun, R. (2017). Low-percentage Ln 3 + doping in a tetranuclear lanthanum polyoxometalate assembled from [Mo 7 O 24]6− polyanions yielding visible and near-infrared luminescence. Inorganic Chemistry, 56, 3190–3200.CrossRefGoogle Scholar
  15. Kyzas, G. Z., & Matis, K. A. (2015). Nanoadsorbents for pollutants removal: A review. Journal of Molecular Liquids, 203, 159–168.CrossRefGoogle Scholar
  16. Lindqvist, I. N. G. V. A. R. (1950). Crystal structure studies on anhydrous sodium molybdates and tungstates. Acta Chemica Scandinavica, 4, 1066–1074.CrossRefGoogle Scholar
  17. Linke, D. (2009). Chapter 34 detergents. An overview (1st ed.). Amsterdam: Elsevier Inc.Google Scholar
  18. Mahadevaiah, N., Venkataramani, B., & Prakash, B. S. J. (2007). Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite a breakthrough curve study. Chemistry of Materials, 19(18), 4606–4612.CrossRefGoogle Scholar
  19. Mahmoud, S. Ben, Hamzaoui, A. H., & Essafi, W. (2016). Spectrophotometric study of the interaction of methylene blue with poly (styrene-co-sodium styrene sulfonate). Mediterranean Journal of Chemistry, 5, 493–506.CrossRefGoogle Scholar
  20. Mansour, N. C., Ouni, H., & Hafiane, A. (2018). Binding of methylene blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration. Membrane Water Treatment, 9(2), 87–94.Google Scholar
  21. Mcrae, E. G., & Kasha, M. (1958). Enhancement of phosphorescence ability upon aggregation of dye molecules. The Journal of Chemical Physics, 721, 7–9.Google Scholar
  22. Mondal, S., Ouni, H., Dhahbi, M., & De, S. (2012). Kinetic modeling for dye removal using polyelectrolyte enhanced ultrafiltration. Journal of Hazardous Materials, 229–230, 381–389.CrossRefGoogle Scholar
  23. Mouelhi, M., Marzouk, I., & Hamrouni, B. (2016). Optimization studies for water defluoridation by adsorption: application of a design of experiments. Desalination and Water Treatment, 57(21), 9889–9899.CrossRefGoogle Scholar
  24. Nandini, R., & Vishalakshi, B. (2009). A comparitive study of polyelectrolyte-dye interactions. Spectrochimica Acta–Part A: Molecular and Biomolecular Spectroscopy, 74, 1025–1030.CrossRefGoogle Scholar
  25. Nandini, R., & Vishalakshi, B. (2010). A study of interaction of cationic dyes with anionic polyelectrolytes. Spectrochimica Acta–Part A: Molecular and Biomolecular Spectroscopy, 75, 14–20.CrossRefGoogle Scholar
  26. Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chemical Engineering Journal, 197, 359–367.CrossRefGoogle Scholar
  27. Omwoma, S., Gore, C. T., Ji, Y., et al. (2014). Environmentally benign polyoxometalate materials. Coordination Chemistry Reviews, 286, 17–29.CrossRefGoogle Scholar
  28. Panić, V. V., Šešlija, S. I., Nešić, A. R., & Veličković, S. J. (2013). Adsorpcija azo boja na polimernim materijalima. Hemijska Industrija, 67, 881–900.CrossRefGoogle Scholar
  29. Proust, A., Thouvenot, R., & Gouzerh, P. (2008). Functionalization of polyoxometalates: Towards advanced applications in catalysis and materials science. Chemical Communications, 16, 1837–1852.CrossRefGoogle Scholar
  30. Purkait, M. K., DasGupta, S., & De, S. (2004). Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation and Purification Technology, 37, 81–92.CrossRefGoogle Scholar
  31. Saleh, A., Tuzen, M., & Sar, A. (2018). Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis. Journal of Environmental Management, 211, 323–333.CrossRefGoogle Scholar
  32. Schwarze, M., Schaefer, L., Chiappisi, L., & Gradzielski, M. (2018). Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Separation and Purification Technology, 199, 20–26.CrossRefGoogle Scholar
  33. Srinivasan, B. R., Morajkar, S. M., Khandolkar, S. S., et al. (2017). Synthesis, structure and properties of a hexarubidium heptamolybdate with bridging aqua ligands. Indian Journal of Chemistry–Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 56A, 601–609.Google Scholar
  34. Velpula, S., Umapathy, K. S., Thyarla, A., et al. (2017). Dairy wastewater treatment by membrane systems–a review. International Journal of Pure and Applied Bioscience, 5, 389–395.CrossRefGoogle Scholar
  35. Verbych, S., Bryk, M., & Zaichenko, M. (2006). Water treatment by enhanced ultrafiltration. Desalination, 198, 295–302.CrossRefGoogle Scholar
  36. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154–168.CrossRefGoogle Scholar
  37. Vleugels, L. F. W., Ricois, S., Voets, I. K., & Tuinier, R. (2017). Reversal of metachromasy revisited; displacement of Toluidine-blue from alginate by surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 454–461.CrossRefGoogle Scholar
  38. Yu, S., Liu, M., Ma, M., et al. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350, 83–91.CrossRefGoogle Scholar
  39. Zhang, T., Brown, J., Oakley, R. J., & Faul, C. F. J. (2009). Towards functional nanostructures: Ionic self-assembly of polyoxometalates and surfactants. Current Opinion in Colloid and Interface Science, 14, 62–70.CrossRefGoogle Scholar
  40. Zhu, L., Chen, K., Hao, J., et al. (2015). Synthesis and crystallization behavior of surfactants with hexamolybdate as the polar headgroup. Inorganic Chemistry, 54, 6075–6077.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Malak Kahloul
    • 1
    • 2
    Email author
  • Selim Mahfoudhi
    • 2
  • Jalila Chekir
    • 2
  • Amor Hafiane
    • 2
  1. 1.Faculty of Sciences of TunisUniversity Tunis - El ManarTunisTunisia
  2. 2.Laboratory of WaterMembrane and Environmental Biotechnology, (LEMBE)SolimanTunisia

Personalised recommendations