Advertisement

Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector

  • A. Muthu Manokar
  • M. Vimala
  • Ravishankar SathyamurthyEmail author
  • A. E. Kabeel
  • D. Prince Winston
  • Ali J. Chamkha
Article
  • 23 Downloads

Abstract

This manuscript brings out with an enhancement of the freshwater productivity from the active inclined solar panel basin solar still (AISPBSS). The research was conducted on the AISPBSS by the diversified mass flow rate of water (mf). The maximum freshwater yield obtained at mf at 1.8, 3.2 and 4.7 kg/h is 7.5, 6.5 and 5.4 kg, respectively. The daily average thermal and exergy efficiency of the AISPBSS at mf at 1.8, 3.2 and 4.7 kg/h is 43.71, 38.27 and 29.62% and 8.39, 6.94 and 5.08%, respectively. The daily average PV panel power production of 47.71, 49.84 and 53.83 watts, electrical efficiency of 7.2, 7.6 and 8.1%, thermal efficiency of 17.3, 18.3 and 19.7%, exergy efficiency of 18.32, 20.23 and 22.39%, the overall thermal efficiency of 61.39, 57.44 and 51.37% and the overall exergy efficiency of 26.52, 27.14 and 27.40% are obtained from the system under mf at 1.8, 3.2 and 4.7 kg/h, respectively. When mf increases, there are decreases in the AISPBSS distillate yield, thermal, exergy and the overall thermal efficiency and increases in the PV panel power production and electrical, thermal, exergy and the overall exergy efficiency. Further, energy return term and carbon credit attained for the AISPBSS have been calculated. It was found that payback period of 20, 18.7 and 17.5 years and carbon credit earned of 21, 25 and 30 $ are obtained at mf at 1.8, 3.2 and 4.7 kg/h, respectively.

Keywords

Photovoltaic panel-integrated solar still Mass flow rates Panel efficiency PV thermal and exergy analysis Energy payback period Carbon credit earned 

Abbreviations

CSS

Conventional solar still

EHTC

Evaporative heat transfer coefficient

EPBP

Energy payback period

AISPBSS

Active inclined solar panel basin solar still

ISS

Inclined solar still

IWSS

Inclined wick solar still

PSS

Pyramid solar still

PV

Photovoltaic

SSS

Stepped solar still

VFPR

Vertical flat-plate reflector

List of symbols

A

Area (m2)

A

Area of solar panel (m2)

CO2

Carbon dioxide

E

Energy (kWh)

Ein

Embodied energy (kWh)

Eout

Annual energy output (kWh)

Exinput

Exergy input of solar still (W/m2)

Exoutput

Exergy output of solar still (W/m2)

H

Monthly average irradiation on PV panels

h

Heat transfer coefficient (W/m2K)

I

Current (A)

I (t)

Solar intensity (W/m2)

L

Life of the system (years)

Lfg

Latent heat of vaporization (kJ/kg K)

mew

Hourly productivity from solar still (kg/m2 h)

mf

Mass flow rate (kg/h)

P

Power production

PR

Performance ratio, coefficient for losses (range between 0.9 and 0.5, default value = 0.75)

PV

Photovoltaic

PV/T

Photovoltaic/thermal

r

Solar panel efficiency (%)

T

Temperature (°C)

V

Voltage (V)

ηoverall,exe

Overall exergy effectiveness (%)

ηpv

Solar panel effectiveness (%)

Subscript

a

Ambient

d

Daily

e

Evaporation

g

Glass

s

Sun

w

Water

Notes

References

  1. Abdallah, S., Abu-Khader, M. M., & Badran, O. (2009). Performance evaluation of solar distillation using vacuum tube coupled with photovoltaic system. Applied Solar Energy, 45(3), 176–180.CrossRefGoogle Scholar
  2. Abdullah, A. S. (2013). Improving the performance of stepped solar still. Desalination, 319, 60–65.CrossRefGoogle Scholar
  3. Abujazar, M. S. S., Fatihah, S., Ibrahim, I. A., Kabeel, A. E., & Sharil, S. (2017a). Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model. Journal of Cleaner Production, 170, 147–159.  https://doi.org/10.1016/j.jclepro.2017.09.092.CrossRefGoogle Scholar
  4. Abujazar, M. S. S., Fatihah, S., & Kabeel, A. E. (2017b). Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate. Desalination, 423, 141–148.CrossRefGoogle Scholar
  5. Al-Nimr, M. A. (2015). Modeling of a novel concentrated PV/T distillation system enhanced with a porous evaporator and an internal condenser. Solar Energy, 120, 593–602.CrossRefGoogle Scholar
  6. Al-Nimr, M. A., & Al-Ammari, W. A. (2016). A novel hybrid PV-distillation system. Solar Energy, 135, 874–883.CrossRefGoogle Scholar
  7. Al-Nimr, M. D. A., Al-Ammari, W. A., & Alkhalidi, A. (2018). A novel hybrid photovoltaics/thermoelectric cooler distillation system. International Journal of Energy Research.Google Scholar
  8. Al-Nimr, M. A., Kiwan, S. M., & Talafha, S. (2016). Hybrid solar-wind water distillation system. Desalination, 395, 33–40.CrossRefGoogle Scholar
  9. Al-Nimr, M. A., & Qananba, K. S. (2018). A solar hybrid system for power generation and water distillation. Solar Energy, 171, 92–105.CrossRefGoogle Scholar
  10. Aybar, H. Ş., Irani, F., & Arslan, M. (2016). Performance analysis of single and double basin-inclined solar water distillation systems with and without black-fleece wick. Desalination and Water Treatment, 57(37), 17167–17181.CrossRefGoogle Scholar
  11. Dev, R., & Tiwari, G. N. (2010). Characteristic equation of a hybrid (PV-T) active solar still. Desalination, 254, 126–137.CrossRefGoogle Scholar
  12. El-Agouz, S. A. (2014). Experimental investigation of stepped solar still with continuous water circulation. Energy Conversion and Management, 86, 186–193.CrossRefGoogle Scholar
  13. El-Agouz, S. A., El-Samadony, Y. A. F., & Kabeel, A. E. (2015). Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management, 101, 606–615.CrossRefGoogle Scholar
  14. Eltawil, M. A., Azam, M. M., & Alghannam, A. O. (2018). Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). Journal of Cleaner Production.  https://doi.org/10.1016/j.jclepro.2018.01.229.Google Scholar
  15. Eltawil, M. A., & Omara, Z. M. (2014). Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination, 349, 1–9.CrossRefGoogle Scholar
  16. Fathy, M., Hassan, H., & Ahmed, M. S. (2018). Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Solar Energy, 163, 54–61.CrossRefGoogle Scholar
  17. Gaur, M. K., & Tiwari, G. N. (2010). Optimization of number of collectors for integrated PV/T hybrid active solar still. Applied Energy, 87, 1763–1772.CrossRefGoogle Scholar
  18. Hidouria, K., Mishrab, D. R., Benhmidenea, A., & Chouachia, B. (2017). Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN. Desalination and Water Treatment, 88, 52–59.CrossRefGoogle Scholar
  19. Kabeel, A. E., Abdelgaied, M., & Essa, A. (2018). Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. Journal of Cleaner Production, 183, 20–25.  https://doi.org/10.1016/j.jclepro.2018.02.144.CrossRefGoogle Scholar
  20. Kabeel, A. E., Hamed, M. H., & Omara, Z. M. (2012a). Augmentation of the basin type solar still using photovoltaic powered turbulence system. Desalination and Water Treatment, 48(1–3), 182–190.CrossRefGoogle Scholar
  21. Kabeel, A. E., Khalil, A., Omara, Z. M., & Younes, M. M. (2012b). Theoretical and experimental parametric study of modified stepped solar still. Desalination, 289, 12–20.CrossRefGoogle Scholar
  22. Kabeel, A. E., Manokar, A. M., Sathyamurthy, R., Winston, D. P., El-Agouz, S. A., & Chamkha, A. J. (2019). A review on different design modifications employed in inclined solar still for enhancing the productivity. Journal of Solar Energy Engineering, 141(3), 031007.CrossRefGoogle Scholar
  23. Kabeel, A. E., Teamah, M. A., Abdelgaied, M., & Abdel Aziz, G. B. (2017). Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. Journal of Cleaner Production, 161, 881–887.  https://doi.org/10.1016/j.jclepro.2017.05.195.CrossRefGoogle Scholar
  24. Kaviti, A. K., Yadav, A., & Shukla, A. (2016). Inclined solar still designs: A review. Renewable and Sustainable Energy Reviews, 54, 429–451.CrossRefGoogle Scholar
  25. Kumar, S. (2013). Thermal–economic analysis of a hybrid photovoltaic thermal (PVT) active solar distillation system: Role of carbon credit. Urban Climate, 5, 112–124.CrossRefGoogle Scholar
  26. Kumar, P. N., Manokar, A. M., Madhu, B., Kabeel, A. E., Arunkumar, T., Panchal, H., et al. (2017). Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundwater for Sustainable Development, 5, 229–234.  https://doi.org/10.1016/j.gsd.2017.08.003.CrossRefGoogle Scholar
  27. Kumar, P. V., Kumar, A., Prakash, O., & Kaviti, A. K. (2015). Solar stills system design: A review. Renewable and Sustainable Energy Reviews, 51, 153–181.CrossRefGoogle Scholar
  28. Kumar, S., & Tiwari, A. (2010). Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still. Energy Conversion and Management, 51, 1219–1229.CrossRefGoogle Scholar
  29. Kumar, S., & Tiwari, G. N. (2009). Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Solar Energy, 83, 1656–1667.CrossRefGoogle Scholar
  30. Malaeb, L., Aboughali, K., & Ayoub, G. M. (2016). Modeling of a modified solar still system with enhanced productivity. Solar Energy, 125, 360–372.CrossRefGoogle Scholar
  31. Manokar, A. M., Murugavel, K. K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still—A review. Renewable and Sustainable Energy Reviews, 38, 309–322.CrossRefGoogle Scholar
  32. Manokar, A. M., Prince Winston, D., Kabeel, A. E., Sathyamurthy, R., & Arunkumar, T. (2018a). Different parameter and technique affecting the rate of evaporation on active solar still—A review. Heat and Mass Transfer, 54, 593–630.CrossRefGoogle Scholar
  33. Manokar, A. M., Taamneh, Y., Kabeel, A. E., Sathyamurthy, R., Winston, D. P., & Chamkha, A. J. (2018b). Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater. Desalination and Water Treatment, 136, 20–30.CrossRefGoogle Scholar
  34. Manokar, A. M., Vimala, M., Winston, D. P., Ramesh, R., Sathyamurthy, R., Nagarajan, P. K., et al. (2019). Different parameters affecting the condensation rate on an active solar still—A review. Environmental Progress & Sustainable Energy, 38(1), 286–296.CrossRefGoogle Scholar
  35. Manokar, A. M., Winston, D. P., Kabeel, A. E., El-Agouz, S. A., Sathyamurthy, R., Arunkumar, T., et al. (2018c). Integrated PV/T solar still—A mini-review. Desalination, 435, 259–267.CrossRefGoogle Scholar
  36. Manokar, A. M., Winston, D. P., Kabeel, A. E., & Sathyamurthy, R. (2018d). Sustainable fresh water and power production by integrating PV panel in inclined solar still. Journal of Cleaner Production, 172, 2711–2719.CrossRefGoogle Scholar
  37. Manokar, A. M., Winston, D. P., Mondol, J. D., Sathyamurthy, R., Kabeel, A. E., & Panchal, H. (2018e). Comparative study of an inclined solar panel basin solar still in passive and active mode. Solar Energy, 169, 206–216.CrossRefGoogle Scholar
  38. Murugavel, K. K., Anburaj, P., Hanson, R. S., & Elango, T. (2013). Progresses in inclined type solar stills. Renewable and Sustainable Energy Reviews, 20, 364–377.CrossRefGoogle Scholar
  39. Nagarajan, P. K., El-Agouz, S. A., DG, H. S., Edwin, M., Madhu, B., Sathyamurthy, R., et al. (2017). Analysis of an inclined solar still with baffles for improving the yield of fresh water. Process Safety and Environmental Protection, 105, 326–337.CrossRefGoogle Scholar
  40. Nayi, K. H., & Modi, K. V. (2018). Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 136–148.CrossRefGoogle Scholar
  41. Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2013). Enhancing the stepped solar still performance using internal reflectors. Desalination, 314, 67–72.CrossRefGoogle Scholar
  42. Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2014). Enhancing the stepped solar still performance using internal and external reflectors. Energy Conversion and Management, 78, 876–881.CrossRefGoogle Scholar
  43. Panchal, H., Taamneh, Y., Sathyamurthy, R., Kabeel, A. E., El-Agouz, S. A., Kumar, P. N., et al. (2017). Economic and exergy investigation of triangular pyramid solar still integrated to inclined solar still with baffles. International Journal of Ambient Energy.  https://doi.org/10.1080/01430750.2017.1422143.Google Scholar
  44. Praveen Kumar, B., Winston, D. P., Pounraj, P., Manokar, A. M., Sathyamurthy, R., & Kabeel, A. E. (2017). Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination.  https://doi.org/10.1016/j.desal.2017.11.007.Google Scholar
  45. Riahi, A., Wan Yusof, K., Mahinder Singh, B. S., Isa, M. H., Olisa, E., & Munni Zahari, N. A. (2015). Sustainable potable water production using a solar still with photovoltaic modules-AC heater. Desalination and Water Treatment, 57, 14929–14944.  https://doi.org/10.1080/19443994.2015.1070285.CrossRefGoogle Scholar
  46. Saeedi, F., Sarhaddi, F., & Behzadmehr, A. (2015). Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy, 87, 142–152.CrossRefGoogle Scholar
  47. Saini, V., Tiwari, S., & Tiwari, G. N. (2017). Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. Journal of Cleaner Production, 156, 30–40.CrossRefGoogle Scholar
  48. Sathyamurthy, R., Nagarajan, P. K., El-Agouz, S. A., Jaiganesh, V., & Khanna, P. S. (2015). Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production. Energy Conversion and Management, 97, 235–242.CrossRefGoogle Scholar
  49. Sathyamurthy, R., Samuel, D. H., & Nagarajan, P. K. (2016). Theoretical analysis of inclined solar still with baffle plates for improving the fresh water yield. Process Safety and Environmental Protection, 101, 93–107.CrossRefGoogle Scholar
  50. Singh, D. B., & Tiwari, G. N. (2017a). Enhancement in energy metrics of double slope solar still by incorporating N identical PVT collectors. Solar Energy, 143, 142–161.CrossRefGoogle Scholar
  51. Singh, D. B., & Tiwari, G. N. (2017b). Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: A comparative study. Solar Energy, 142, 144–158.CrossRefGoogle Scholar
  52. Singh, D. B., Tiwari, G. N., Al-Helal, I. M., Dwivedi, V. K., & Yadav, J. K. (2016a). Effect of energy matrices on life cycle cost analysis of passive solar stills. Solar Energy, 134, 9–22.CrossRefGoogle Scholar
  53. Singh, D. B., Yadav, J. K., Dwivedi, V. K., Kumar, S., Tiwari, G. N., & Al-Helal, I. M. (2016b). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy, 130, 207–223.CrossRefGoogle Scholar
  54. Singh, D. B., Yadav, J. K., Dwivedi, V. K., Kumar, S., Tiwari, G. N., & Al-Helal, I. M. (2016c). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy, 130, 207–223.CrossRefGoogle Scholar
  55. Tanaka, H. (2011). Tilted wick solar still with flat plate bottom reflector. Desalination, 273(2), 405–413.CrossRefGoogle Scholar
  56. Tanaka, H. (2013). Optimum inclination of still and bottom reflector for tilted wick solar still with flat plate bottom reflector. Desalination and Water Treatment, 51(34–36), 6482–6489.CrossRefGoogle Scholar
  57. Tanaka, H., & Nakatake, Y. (2007). Improvement of the tilted wick solar still by using a flat plate reflector. Desalination, 216(1–3), 139–146.CrossRefGoogle Scholar
  58. Tiwari, G. N., Yadav, J. K., Singh, D. B., Al-Helal, I. M., & Abdel-Ghany, A. M. (2015). Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination, 367, 186–196.CrossRefGoogle Scholar
  59. Velmurugan, V., Kumar, K. N., Haq, T. N., & Srithar, K. (2009). Performance analysis in stepped solar still for effluent desalination. Energy, 34(9), 1179–1186.CrossRefGoogle Scholar
  60. Yari, M., Mazareh, A. E., & Mehr, A. S. (2016). A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination, 398, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Electrical and Electronics EngineeringR.M.K. Engineering CollegeChennaiIndia
  3. 3.Department of Automobile EngineeringHindustan Institute of Technology and ScienceChennaiIndia
  4. 4.Mechanical Power Engineering Department, Faculty of EngineeringTanta UniversityTantaEgypt
  5. 5.Department of Electrical and Electronics EngineeringKamaraj College of Engineering and TechnologyVirudhunagarIndia
  6. 6.Mechanical Engineering Department, Prince Sultan Endowment for Energy and EnvironmentPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia

Personalised recommendations