Advertisement

A comparison of different tillage systems in irrigated conditions by risk and gross margin analysis in Erzurum region of Turkey

  • Okan DemirEmail author
  • Zinnur Gözübüyük
Article
  • 85 Downloads

Abstract

The potential of tillage systems for generating environmental pollution and the economic risks of the systems are influential factors for farmers to adopt conservation tillage practices. This study was carried out between 2000 and 2008 in order to evaluate the economic and risk of different tillage and planting systems in the province of Erzurum, Turkey. Tillage treatments consist of conventional tillage [moldboard plow + disk harrow + combined harrows + precision seeder, (CT)], reduced tillage 1 [cultivator + combined harrows + precision seeder, (RT1)], reduced tillage 2 [rotary power harrow + precision seeder, (RT2)] and no-till seeding [no-till seeder, (NT)] systems which were studied. A trial field has been tilled with four different tillage systems with a crop rotation of common vetch–winter wheat–sunflower. The economic evaluation of the tillage and planting systems was made by calculating the gross margin and the risk appraisal and the standard deviation of the yield and gross margins. The conventional tillage system required the most labor, fuel, oil and variable costs. According to conventional tillage and planting system, the most cost-saving system is direct planting by NT. The highest pollutant in terms of environment was the CT system with the highest carbon dioxide release, while the NT system was the most environmentally friendly system. The order of systems from high to low, in terms of obtained gross margin, ranked a CT, RT1, RT2 and NT. The lowest variation in terms of productivity was in the NT system for all products, and the highest variation was in the RT1 system. In terms of gross margin, the lowest variation was again in the NT system. A farmer who decides on the basis of gross margin should choose the CT system with the highest average gross margin. A producer considering gross margin should decide on the NT system based on risk assessment.

Keywords

No-till Greenhouse gas emission Tillage economics Erzurum 

Notes

Acknowledgements

Financial support for the execution of the study was provided by the General Directorate of Agricultural Research and Policies in the Ministry of Agriculture and Forestry (grant No: TAGEM-1998).

References

  1. Abbaspour-Gilandeh, Y., & Sedghi, R. (2015). Predicting soil fragmentation during tillage operation using fuzzy logic approach. Journal of Terramechanics, 57, 61–69.CrossRefGoogle Scholar
  2. Akbarnia, A., Farhani, F., & Heidary, B. (2013). Economic comparison of tillage and planting operations in three tillage systems. Agricultural Engineering International: CIGR Journal, 15(4), 180–184.Google Scholar
  3. Anderson, K. B., & Ikerd, J. E. (1984). Risk ratings pocket calculator worksheet. Current report no. CR-160, Cooperative Extension Service, Oklahoma State University.Google Scholar
  4. Anonymous. (2011). National grain council report of Turkey. http://uhk.org.tr/dosyalar/bugdayraporumayis2011.pdf. Accessed 23 Sept 2016.
  5. Aydın, B., Baran, M. F., Kurşun, İ., Kayhan, İ. E., Bayhan, Y., & Durgut, M. R. (2016). İkinci Ürün Ayçiçeği ve İkinci Ürün Silajlık Mısır Üretiminde Uygulanabilecek FarklıToprak İşleme Yöntemlerinin Brüt Kar Analizi. Türk Tarım ve Doğa Bilimleri Dergisi, 3(4), 296–304.Google Scholar
  6. Aykas, E., Yalçın, H., & Çakır, E. (2005). Koruyucu toprak işleme yöntemleri ve doğrudan ekim. Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(3), 195.Google Scholar
  7. Bacenetti, J., Restuccia, A., Schillaci, G., & Failla, S. (2017). Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renewable Energy, 112, 444–456.CrossRefGoogle Scholar
  8. Bertolino, A. V., Fernandes, N. F., Miranda, J. P., Souza, A. P., Lopes, M. R., & Palmieri, F. (2010). Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau. Journal of Hydrology, 393(1–2), 94–104.CrossRefGoogle Scholar
  9. Blomert, B. J., Zentner, R. P., Arshad, M. A., & Gill, K. S. (1997). Economics of alternative tillage systems in northeastern Alberta. Final report. Beaverlodge: Northern Agricultural Research Center.Google Scholar
  10. Brandt, S. A. (1992). Zero vs conventional tillage and their effects on crop yield and soil moisture. Canadian Journal of Plant Science, 72, 679–688.CrossRefGoogle Scholar
  11. Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biology, 23(10), 4396–4419.CrossRefGoogle Scholar
  12. Çıkman, A., Vurarak, Y., Sağlam, R., Monis, T., Nacar, A. S., & Çetiner, İ. H. (2009). Harran Ovasında II. Ürün Mısırda Farklı Toprak İşleme-Ekim Yöntemlerinin Teknik ve Ekonomik Yönden Karşılaştırılması. GAP Toprak Su Kaynakları ve Tarımsal Araştırma Enstitüsü Müdürlüğü Yayınları. Şanlıurfa.Google Scholar
  13. Damanauskas, V., Janulevicius, A., & Pupinis, G. (2015). In fluence of extra weight and tire pressure on fuel consumption at normal tractor slippage. The Journal of Agricultural Science, 7, 55–67.  https://doi.org/10.5539/jas.v7n2p55.Google Scholar
  14. DATAE. (2014). Hydro-meteorological observation data. Erzurum: Eastern Anatolia Agricultural Research Institute.Google Scholar
  15. Gözübüyük, Z., Öztürk, İ., Çelik, A., Evren, S., Daşçı, E., & Adıgüzel, M. C. (2015). Ayçiçeğinde Ayçiçeği Üretiminin Geleneksel Toprak İşleme-Ekim Sistemine Alternatif Olabilecek, Farklı Toprak İşleme-Ekim Sistemlerinin Enerji Kullanım Etkinliği Yönünden Karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 11(2), 113–119.Google Scholar
  16. Gözübüyük, Z., Öztürk, İ., Çelik, A., Ören, E., Kara, M. (2001). Erzurum Kuru ve Sulu Tarım Koşullarında Değişik Toprak İşleme–Ekim Sistemlerinin Tarla Filizi Çıkışı ve Verim Yönünden Karşılaştırılması. In Trakya Toprak ve Su Kaynakları Sempozyumu, 24–27 Mayıs 2001 Kırklareli (pp. 470–475).Google Scholar
  17. Gözübüyük, Z., Öztürk, İ., Demir, O., & Çelik, A. (2010). Ayçiçeğinde Farklı Toprak İşleme-Ekim Sistemlerinin Bazı İşletme Parametreleri Yönünden Karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 6(4), 114.Google Scholar
  18. Hamzei, J., & Seyyedi, M. (2016). Energy use and input–output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil and Tillage Research, 157, 73–82.CrossRefGoogle Scholar
  19. Hedberg, D., Kullander, S., & Frank, H. (2010). The world needs a new energy paradigm. Ambio, 39(1), 1–10.CrossRefGoogle Scholar
  20. Hernánz, J. L., Girón, V. S., & Cerisola, C. (1995). Long-term energy use and economic evaluation of three tillage systems for cereal and legume production in central Spain. Journal of Soil and Tillage Research, 35, 183–198.CrossRefGoogle Scholar
  21. Hsu, Y., Singh, S. K., Chiang, M., Wu, Y., & Chang, I. (2009). Strategies to lower greenhouse gas level by rice agriculture. African Journal of Biotechnology, 8(2), 126.Google Scholar
  22. IPCC. (1997). Intergovernmental panel on climate change. In Houghton, J. T. (Beck et al.) Revised 1996 IPCC guidelines for national greenhouse gas inventories: Volumes 1, 2 and 3. Paris: IPCC/OECD/IEA.Google Scholar
  23. Janulevičius, A., Juostas, A., & Pupinis, G. (2013). Tractor’s engine performance and emission characteristics in the process of ploughing. Energy Conversion and Management, 75, 498–508.  https://doi.org/10.1016/j.enconman.2013.06.052.CrossRefGoogle Scholar
  24. Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering (Vol. 5, pp. 14–53). Energy and Biomass Engineering. USA: ASAE Publication.Google Scholar
  25. Just, R., & Pope, R. (1979). Production function estimation and related risk considerations. American Journal of Agricultural Economics, 61(2), 276–284.CrossRefGoogle Scholar
  26. Karaağaç, H. A., Barut, Z. B., Çakır, B., Aykanat, S., Bolat, A., & Sağlam, C. (2010). İkinci Ürün Silajlık Mısır Üretiminde Farklı Toprak İşleme ve Ekim Yöntemlerinin Verim ve Ekonomik Yönden Karşılaştırılmaları. Tarım Makinaları Bilimi Dergisi (Journal of Agricultural Machinery Science), 6(4), 261–266.Google Scholar
  27. Khakbazan, M., Larney, F. J., Huang, J., Dilay, D., Mohr, R., Pearson, D. C., et al. (2016). Economic comparison of conventional and conservation management practices for irrigated potato production in southern Alberta. American Journal of Potato Research, 93(5), 448–462.CrossRefGoogle Scholar
  28. Koga, N., Tsuruta, H., Tsuji, H., & Nakano, H. (2003). Fuel consumption-derived CO2 emissions under conventional and reduced tillage cropping systems in northern Japan. Agriculture, Ecosystems and Environment, 99(1–3), 213–219.CrossRefGoogle Scholar
  29. Konyar, K. (2001). Assessing the role of US agriculture in reducing greenhouse gas emissions and generating additional environmental benefits. Ecological Economics, 38(1), 85–103.CrossRefGoogle Scholar
  30. Krauss, M., Berner, A., Burger, D., Wiemken, A., Niggli, U., & Mader, P. (2010). Reduced tillage in temperate organic farming: Implications for crop management and forage production. Soil Use Management, 26, 12–20.CrossRefGoogle Scholar
  31. Lafond, G. P., Zentner, R. P., Geremia, R., & Derksen, D. A. (1993). The effects of tillage system on the economic performance of spring wheat, winter wheat, flax, and field pea production in east-central Saskatchewan. Canadian Journal of Plant Science, 73, 47–54.CrossRefGoogle Scholar
  32. Leghari, N., Shah, A., Farhad, W., & Hammad, H. (2017). Influence of tillage practices on yield components and economic analysis of maize. Pakistan Journal of Agriculture, Agricultural Engineering, Veterinary Sciences, 33(1), 66–73.Google Scholar
  33. Mandal, T., Chandra, S., & Singh, G. (2018). Productivity and economics of rice-wheat cropping system under irrigation, nutrient and tillage practices in a silty clay loam soil. International Journal of Current Microbiology and Applied Sciences, 7(3), 823–831.  https://doi.org/10.20546/ijcmas.2018.703.096.CrossRefGoogle Scholar
  34. Marakoğlu, T., & Çarman, K. (2008). Buğday Üretiminde Azaltılmış Toprak İşleme ve Direkt Ekim Uygulamaları. Selçuk Tarım Bilimleri Dergisi, 22(46), 73–76.Google Scholar
  35. Micucci, F. G., & Taboada, M. A. (2006). Soil physical properties and soybean (Glycine max, Merrill) root abundance in conventionally-and zero-tilled soils in the humid Pampas of Argentina. Soil and Tillage Research, 86(2), 152–162.CrossRefGoogle Scholar
  36. Nagy, C. N. (1997). An economic assessment of alternative cropping systems for the Saskatchewan parklands. M.S. thesis, Department of Agricultural Economics, University of Saskatchewan.Google Scholar
  37. Naujokienė, V., Šarauskis, E., Lekavičienė, K., Adamavičienė, A., Buragienė, S., & Kriaučiūnienė, Z. (2018). The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage. Science of the Total Environment, 626, 1402–1413.CrossRefGoogle Scholar
  38. Ozpınar, S. (2006). Effects of tillage systems on weed population and economics for winter wheat production under the Mediterranean dryland conditions. Soil and Tillage Research, 87(2006), 1–8.CrossRefGoogle Scholar
  39. Öztürk, H. H., Gözübüyük, Z., Atay, Ü. (2017). Türkiye’de Pamuk Üretiminde Yakıt Tüketimine Bağlı Olarak Gerçekleşen Karbondioksit Emisyonlarının Değerlendirilmesi. 3. Uluslararası Tarım ve Çevre Kongresi Bildiriler Kitabı, Antalya. ISBN: 978-605-83551-7-0.Google Scholar
  40. Pannell, D. J. (1991). Pests and pesticides, risk and risk aversion. Agricultural Economics, 5(4), 361–383.CrossRefGoogle Scholar
  41. Pryor, S. W., Smithers, J., Lyne, P., & van Antwerpen, R. (2017). Impact of agricultural practices on energy use and greenhouse gas emissions for South African sugarcane production. Journal of Cleaner Production, 141, 137–145.CrossRefGoogle Scholar
  42. Sánchez-Girón, V., Serrano, A., Hernanz, J. L., & Navarrete, L. (2004). Economic assessment of three long-term tillage systems for rainfed cereal and legume production in semiarid central Spain. Soil and Tillage Research, 78, 35–44.CrossRefGoogle Scholar
  43. Shahzad, M., Farooq, M., Jabran, K., Yasir, T. A., & Hussain, M. (2016). Influence of various tillage practices on soil physical properties and wheat performance in different wheat-based cropping systems. International Journal of Agriculture and Biology, 18(4), 821.CrossRefGoogle Scholar
  44. Smith, E. G., Peters, T. L., Blackshaw, R. E., Lindwall, C. W., & Larney, F. J. (1996). Economics of reduced tillage fallow-crop systems in the Dark Brown soil zone of Alberta. Canadian Journal of Plant Science, 76, 411–416.Google Scholar
  45. Sonntag, G. J., Zentner, R. P., & Derksen, D. A. (1997). Specialty crop management study: Economics and energy performance. Final report. Swift Current: PERD R&D Program Semiarid Prairie Agricultural Research Centre.Google Scholar
  46. Srivastava, A. K., Goering, C. E., & Rohrbach, R. P. (1993). Engineering principles of agricultural machines (pp. 548–571). USA: ASAE Publication.Google Scholar
  47. Sungur, N., Ulusoy, E., & Yalçın, H. (1994). Ege Bölgesi Koşullarında Buğday ve İkinci Ürün Mısır Elde Etmede Mekanizasyon Olanakları. Tarımsal Mekanizasyon 15. Ulusal Kongresi s. 582–591, 20–22 Eylül 1994, Antalya.Google Scholar
  48. Tuvanç, İ. A., & Dağdemir, V. (2009). Erzurum İli Pasinler İlçesinde Silajlık Mısır Üretim Maliyetinin Tespiti Üzerine Bir Araştırma. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 61–69.Google Scholar
  49. Villoria-Saez, P., Tam, V. W., del Río Merino, M., Arrebola, C. V., & Wang, X. (2016). Effectiveness of greenhouse-gas emission trading Schemes implementation: A review on legislations. Journal of Cleaner Production, 127, 49–58.CrossRefGoogle Scholar
  50. Wang, W., Sardans, J., Lai, D. Y., Wang, C., Zeng, C., Tong, C., et al. (2015). Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Research, 171, 146–156.CrossRefGoogle Scholar
  51. Wu, H., Yuan, Z., Geng, Y., Ren, J., Jiang, S., Sheng, H., et al. (2017). Temporal trends and spatial patterns of energy use efficiency and greenhouse gas emissions in crop production of Anhui Province, China. Energy, 133, 955–968.CrossRefGoogle Scholar
  52. Zentner, R. P., Lafond, G. P., Derksen, D. A., & Campbell, C. A. (2002). Tillage method and crop diversification: Effect on economic returns and riskiness of cropping systems in a Thin Black Chernozem of the Canadian Prairies. Journal of Soil and Tillage Research, 67, 9–21.CrossRefGoogle Scholar
  53. Zentner, R. P., Lafond, G. P., Derksen, D. A., Wall, D. D., Geremia, R., & Blomert, B. J. (1999). The influence of conservation tillage on economic returns and riskiness of cropping systems in the Thin Black soil zone. In: Soils and Crops’99 proceedings workshop, February 25–26, Extension Division. Saskatoon: University of Saskatchewan (pp. 98–108).Google Scholar
  54. Zentner, R. P., McConkey, B. G., Campbell, C. A., Dyck, F. B., & Selles, F. (1996). Economics of conservation tillage in the semiarid prairie. Canadian Journal of Plant Science, 76, 697–705.CrossRefGoogle Scholar
  55. Zentner, R. P., Tessier, S., Peru, M., Dyck, F. B., & Campbell, C. A. (1991). Economics of tillage systems for spring wheat production in Saskatchewan (Canada). Soil and Tillage Research, 21, 225–242.CrossRefGoogle Scholar
  56. Zhang, S., Grip, H., & Lövdahl, L. (2006). Effect of soil compaction on hydraulic properties of two loess soils in China. Soil and Tillage Research, 90(1–2), 117–125.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agriculture Economics, Faculty of AgricultureAtatürk UniversityErzurumTurkey
  2. 2.Directorate of Eastern Anatolia Agricultural ResearchErzurumTurkey

Personalised recommendations