Advertisement

Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment

  • Pooja Negi
  • Suman Mor
  • Khaiwal Ravindra
Article

Abstract

Landfill leachate has an adverse impact on groundwater quality as well as on living being. It contain high levels of organic, inorganic, heavy metal, and xenobiotics, which percolates through the subsoil and contaminate the groundwater. To assess the effect of landfills on groundwater, various physicochemical parameters including heavy metals, and microbiological examination of leachate and groundwater samples was conducted. The results obtained were compared with Bureau of India Standards and World Health Organization guidelines. The results of the study shows that the majority of the sample do not lie in the permissible limits. According to the results, the concenteration of ammoniacal nitrogen (9.8 mg/L), chemical oxygen demand (128 mg/L), chloride (115 mg/L), sodium (98 mg/L) and potassium (42.2 mg/L) was found relatively higher in water samples that have lower depth (30 ft) and distance (1 km) from the landfill. The concentration of measured parameters decreases with increase in depth and distance confirming that the leachate is the potential source of groundwater contamination. Hazard index of Chandigarh, Mohali, and Panchkula landfill site was 0.61, 0.53, and 0.01 mg/kg/day in pre-monsoon and 0.38, 0.24, and 0.01 mg/kg/day in post-monsoon indicating non-carcinogenic health risks.

Keywords

Physicochemical Heavy metals Leachate Groundwater Hazard Index 

Notes

Funding

Funding was provided by University Grants Commission (IN) (Grant No. MANF-2013-14-BUD-28213).

Supplementary material

10668_2018_257_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1089 kb)

References

  1. Abd El-Salam, M. M., & Abu-Zuid, G. I. (2014). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of Advanced Research.  https://doi.org/10.1016/j.jare.2014.02.003.CrossRefGoogle Scholar
  2. Abdul, S., Al, H., Sulaiman, H., Suliman, F. E., & Abdallah, O. (2014). Assessment of heavy metals in leachate of an unlined landfill in the sultanate of Oman. International Journal of Environmental Science and Development, 5(1), 10–13.  https://doi.org/10.7763/IJESD.2014.V5.451.CrossRefGoogle Scholar
  3. Aboyeji, O. S., & Eigbokhan, S. F. (2016). Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of Environmental Management, 183, 333–341.  https://doi.org/10.1016/j.jenvman.2016.09.002.CrossRefGoogle Scholar
  4. Adamu, C. I., Nganje, T. N., & Edet, A. (2015). Environmental nanotechnology, monitoring & management heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology, Monitoring & Management, 3, 10–21.  https://doi.org/10.1016/j.enmm.2014.11.001.CrossRefGoogle Scholar
  5. Akinbile, C. O., Yusoff, M. S., & Area, A. S. (2011). Environmental impact of leachate pollution on groundwater supplies in Akure, Nigeria. International Journal of Environment Science and Development, 2(1).Google Scholar
  6. Alexandre Bogas, J., & Gomes, A. (2015). Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete. Cement & Concrete Composites, 60, 111–122.  https://doi.org/10.1016/j.cemconcomp.2015.04.001.CrossRefGoogle Scholar
  7. Al-Tarazi, E., Abu Rajab, J., Al-Naqa, A., & El-Waheidi, M. (2008). Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method. Journal of Applied Geophysics, 65(3–4), 121–131.  https://doi.org/10.1016/j.jappgeo.2008.06.005.CrossRefGoogle Scholar
  8. Aluko, O. O., Sridhar, M. K. C., & Oluwande, P. A. (2003). Characterization of leachates from a municipal solid waste landfill site in Ibadan, Nigeria. Journal of Environment Health Research, 2(1), 32–37.Google Scholar
  9. Behbahaninia, A., Mirbagheri, S. A., & Nouri, J. (2010). Effects of sludge from wastewater treatment plants on heavy metals transport to soils and groundwater. Iranian Journal of Environmental Health Science & Engineering, 7(5), 401–406.Google Scholar
  10. Bhatt, A. H., Altouqi, S., Karanjekar, R. V., Sahadat Hossain, M. D., Chen, V. P., & Sattler, M. S. (2016). Preliminary regression models for estimating first-order rate constants for removal of BOD and COD from landfill leachate. Environmental Technology & Innovation, 5(February), 188–198.  https://doi.org/10.1016/j.eti.2016.02.002.CrossRefGoogle Scholar
  11. Bhupander, K., & Mukherjee, D. P. (2011). Assessment of human health risk for arsenic, copper, nickel, mercury and zinc in fish collected from tropical wetlands in. Advanced Life Science and Technologyife Science and Technology, 2, 13–25.Google Scholar
  12. Bikundia, D. S., & Mohan, D. (2014). Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. Sustainability of Water Quality and Ecology, 3, 133–150.  https://doi.org/10.1016/j.swaqe.2014.12.001.CrossRefGoogle Scholar
  13. EPA. (2005). Provisional peer reviewed toxicity values for ammonia.Google Scholar
  14. EPA. (2014). Framework for human health risk assessment to inform decision making framework for human health risk assessment to inform decision making.Google Scholar
  15. Haarstad, K., & Mæhlum, T. (2007). Electrical conductivity and chloride reduction in leachate treatment systems. Journal of Environmental Engineering, 133(6), 659–664.  https://doi.org/10.1061/(ASCE)0733-9372(2007).CrossRefGoogle Scholar
  16. Hanipha, M., & Zahir Hussain, A. (2013). Study of groundwater quality at Dindigul Town, Tamilnadu, India. International Research Journal of Environment Science, 2(1), 68–73.Google Scholar
  17. Jhamnani, B., & Singh, S. (2009). Groundwater contamination due to Bhalaswa landfill site in New Delhi. International Journal of Environment Science and Engineering, 1(3), 121–125. Retrieved from http://idc-online.com/technical_references/pdfs/civil_engineering/GroundwaterContamination.pdf.
  18. Kalčíková, G., Babič, J., Pavko, A., & Gotvajn, A. Ž. (2014). Fungal and enzymatic treatment of mature municipal landfill leachate. Waste Management (New York, N.Y.), 34(4), 798–803.  https://doi.org/10.1016/j.wasman.2013.12.017.CrossRefGoogle Scholar
  19. Kaur, K., Ravindra, K., & Mor, S. (2015). A Glance at the World-Waste management policies in India: Can we address the implementation challenges. Waste Management, 37, I-II.CrossRefGoogle Scholar
  20. Khai, N. M. (2012). Chemical precipitation of ammonia and phosphate from Nam Son Landfill Leachate, Hanoi. Iranica Journal of Energy & Environment, 3, 32–36.  https://doi.org/10.5829/idosi.ijee.2012.03.05.06.CrossRefGoogle Scholar
  21. Khound, N. J., Phukon, P., & Bhattacharyya, K. G. (2012). A comparative study of ground water and surface water quality in the Jia—Bharali river basin, Assam, India with reference to physico-chemical characteristics. International Journal of Applied Science and Engineering Research, 1(3), 512–521.  https://doi.org/10.6088/ijaser.0020101052.CrossRefGoogle Scholar
  22. Magombeyi, M., & Nyengera, R. (2012). The impact of municipal landfill on surface and ground water quality in Bulawayo, Zimbabwe. Wudpeckerresearchjournals.Org, 1 (November), 251–258. Retrieved from http://www.wudpeckerresearchjournals.org/JESWR/Pdf/2012/November/MagombeyiandNyengera.pdf.
  23. Maiti, S. K., Hazra, T., & Dutta, A. (2016). Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite—A case study at Dhapa, Kolkata, India. Procedia Environmental Sciences, 35, 391–399.  https://doi.org/10.1016/j.proenv.2016.07.019.CrossRefGoogle Scholar
  24. Mangimbulude, J. C., Van Breukelen, B. M., Krave, A. S., Van Straalen, N. M., & Röling, W. F. M. (2009). Seasonal dynamics in leachate hydrochemistry and natural attenuation in surface run-off water from a tropical landfill. Waste Management, 29(2), 829–838.  https://doi.org/10.1016/j.wasman.2008.06.020.CrossRefGoogle Scholar
  25. Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006a). Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118(1–3), 435–456.  https://doi.org/10.1007/s10661-006-1505-7.CrossRefGoogle Scholar
  26. Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., & Chandra, A. (2006b). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371(1–3), 1–10.CrossRefGoogle Scholar
  27. Mor, S., Kaur, K., & Khaiwal, R. (2016). SWOT analysis of waste management practices in Chandigarh, India and prospects for sustainable cities. Journal of Environmental Biology, 37(3), 327.Google Scholar
  28. Mor, S., Negi, P., & Kaiwal, R. (2018). Assessment of groundwater pollution by landfills in India using leachate pollution index and estimation of error. Environmental Nanotechnology, Monitoring & Management.  https://doi.org/10.1016/j.enmm.2018.09.002.CrossRefGoogle Scholar
  29. Nagarajan, R., Thirumalaisamy, S., & Lakshumanan, E. (2012). Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of Erode City, Tamil Nadu, India. Iranian Journal of Environmental Health Science & Engineering, 9(1), 35.  https://doi.org/10.1186/1735-2746-9-35.CrossRefGoogle Scholar
  30. Naveen, B., Mahapatra Madhab, D., Sitharam, T., Sivapullaiah, P., & Ramachandra, T. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.  https://doi.org/10.1016/j.envpol.2016.09.002.CrossRefGoogle Scholar
  31. Nirmla, D., & Jagath, G. (2013). Leachate characterization and surface groundwater pollution at municipal solid waste landfill of Gohagoda, Sri Lanka. International Journal of Scientific Research, 3(11), 1–7.Google Scholar
  32. Piper, A. M. (1953). A graphic procedure in the geological interpretation of water analysis. Groundwater note no. 12, US Geology Survey Department, Washington, DC.Google Scholar
  33. Pokkate, W., Serilert, C., Siriwong, W., & Mark, R. (2013). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agriculture area in Ubon Ratchthani province, Thailand. Envitonment Geochemical Health. http://doi.org/10.1007/s10653-013-9537-8.CrossRefGoogle Scholar
  34. Pujari, P. R., Labhasetwar, P. K., Mahore, P., & Ganguly, A. K. (2011). Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings—A case study from India. http://doi.org/10.1007/s10661-011-1965-2.CrossRefGoogle Scholar
  35. Rajasekhar, B., Nambi, I. M., & Kumar, S. (2018). Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: A case study of an Indian Metropolitan City. Journal of Environmental Management, 205, 183–191.  https://doi.org/10.1016/j.jenvman.2017.09.078.CrossRefGoogle Scholar
  36. Raju, M. V. S. (2012). Contamination of ground water due to landfill leachate. International Journal of Engineering Research, 53(1), 48–53.Google Scholar
  37. Rao, J., Hari Babu, B., Swami, A. V. V. S., & Sumithra, S. (2013). Chemical characteristics of ground water of Vuyyuru. Part of East Coast of India Abstract: Journal of Environment Research and Technology, 3(2), 225–232.Google Scholar
  38. Ravindra, K., Kaur, K., & Mor, S. (2015). System analysis of municipal solid waste management in Chandigarh and minimization practices for cleaner emissions. Journal of Cleaner production, 89, 251–256.CrossRefGoogle Scholar
  39. Ravindra, K., Kaur, K., & Mor, S. (2016). Occupational exposure to the municipal solid waste workers in Chandigarh, India. Waste Management & Research, 34(11), 1192–1195.CrossRefGoogle Scholar
  40. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.  https://doi.org/10.1016/j.jhazmat.2007.09.077.CrossRefGoogle Scholar
  41. Reyes-lópez, J. A., Ramírez-hernández, J., & Lázaro-mancilla, O. (2008). Assessment of groundwater contamination by landfill leachate: A case in México, 28, 33–39.  https://doi.org/10.1016/j.wasman.2008.03.024.CrossRefGoogle Scholar
  42. Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka state, India. International Journal of Environmental Research and Public Health, 5(3), 158–164.  https://doi.org/10.3390/ijerph5030158.CrossRefGoogle Scholar
  43. Sadeq, M., Moe, C. L., Attarassi, B., Cherkaoui, I., ElAouad, R., & Idrissi, L. (2008). Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. International Journal of Hygiene and Environmental Health, 211(5–6), 546–554.  https://doi.org/10.1016/j.ijheh.2007.09.009.CrossRefGoogle Scholar
  44. Sarvajayakesavalu, S., Lakshminarayanan, D., George, J., Magesh, S. B., Anilkumar, K. M., Brammanandhan, G. M., et al. (2018). Groundwater for sustainable development geographic information system mapping of gross alpha/beta activity concentrations in ground water samples from Karnataka, India: A preliminary study. Groundwater for Sustainable Development, 6(November 2016), 164–168.  https://doi.org/10.1016/j.gsd.2017.12.003.CrossRefGoogle Scholar
  45. Shivaprasad, H., Nagarajappa, D. P., & Sham Sundar, K. M. (2014). A study on physico-chemical characteristics of borewell water in sugar town, Mandya City, Karnataka State, India. Internation Journal of Engineering and Application, 4(7), 112–123.Google Scholar
  46. Shivendra, B. T., & Ramaraju, H. K. (2015). Impact of onsite sanitation system on groundwater in different geological settings of Peri Urban areas. Aquatic Procedia, 4(Icwrcoe), 1162–1172.  https://doi.org/10.1016/j.aqpro.2015.02.148.CrossRefGoogle Scholar
  47. Shukla, H. C., Gupta, P., Mehta, H. C., & Hebert, J. (2002). Descriptive epidemiology of body mass index of an urban adult population in western India. Journal of Epidemiology Community Health, 56, 876–880.CrossRefGoogle Scholar
  48. Sidhu, S. P., & Sharma, B. D. (2009). Characteristics and classification of arid zone soils of Punjab, India. Arid Soil Research and Rehabilation, 4(4), 223–232.CrossRefGoogle Scholar
  49. Siraj, K., & Kitte, S. A. (2013). Analysis of copper, zinc and lead using atomic absorption spectrophotometer in ground water of Jimma town of Southwestern Ethiopia. International Journal of Chemical and Analytical Science, 4(4), 201–204.  https://doi.org/10.1016/j.ijcas.2013.07.006.CrossRefGoogle Scholar
  50. Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528.  https://doi.org/10.1007/s00254-007-0762-2.CrossRefGoogle Scholar
  51. Sun, C., Zhao, W., Zhang, Q., Yu, X., Zheng, X., & Zhao, J. (2016). Spatial distribution, sources apportionment and health risk of metals in topsoil in Beijing, China. Environment Research and Public Health.  https://doi.org/10.3390/ijerph13070727.CrossRefGoogle Scholar
  52. Tank, D. K., & Chandel, C. P. S. (2010). Analysis of the major ion constituents in groundwater of Jaipur City. Nature and Science, 8(10), 1–7.Google Scholar
  53. Wang, J., He, J., & Chen, H. (2012). Science of the total environment assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432, 216–226.  https://doi.org/10.1016/j.scitotenv.2012.06.005.CrossRefGoogle Scholar
  54. Wang, Z., Jiang, Y., Kumar, M., Wang, J., Yang, X., & Amjad, A. (2018). Nitrate removal by combined heterotrophic and autotrophic denitrification processes: Impact of coexistent ions. Bioresource Technology, 250(December 2017), 838–845.  https://doi.org/10.1016/j.biortech.2017.12.009.CrossRefGoogle Scholar
  55. Wang, W., Ma, C., Zhang, Y., Yang, S., Shao, Y., & Wang, X. (2016). Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals. Journal of Environmental Sciences.  https://doi.org/10.1016/j.jes.2016.01.010.CrossRefGoogle Scholar
  56. Woldeyohans, A. M., Worku, T., Kloos, H., & Mulat, W. (2014). Treatment of leachate by recirculating through dumped solid waste in a sanitary landfill in Addis Ababa, Ethiopia. Ecological Engineering, 73, 254–259.  https://doi.org/10.1016/j.ecoleng.2014.09.052.CrossRefGoogle Scholar
  57. Yaqout-Al, A., & Hamoda, M. F. (2003). Evaluation of landfill leachate in arid climate—A case study. Environment International, 29(5969), 593–600.  https://doi.org/10.1016/S0160-4120(03)00018-7.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Environment StudiesPanjab University (PU)ChandigarhIndia
  2. 2.School of Public Health, Department of Community MedicinePostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations