Advertisement

Environment, Development and Sustainability

, Volume 21, Issue 1, pp 429–446 | Cite as

Toward a sustainable city of tomorrow: a hybrid Markov–Cellular Automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030

  • Thinh An NguyenEmail author
  • Phuong Minh Thi Le
  • Tam Minh Pham
  • Huong Thi Thu Hoang
  • Minh Quang Nguyen
  • Hoa Quynh Ta
  • Hanh Thi My Phung
  • Ha Thi Thu Le
  • Luc Hens
Article
  • 131 Downloads

Abstract

The targets and challenges of the sustainable city of tomorrow are wide. In Hanoi city (Vietnam), the sustainable aspects of the urban landscape evolution are affected by a rapid urbanization, inefficient urban spatial planning, and the pressures of contemporary socioeconomic growth. This paper describes the evolution of urban landscape in Hanoi during the period 1990–2030. The background is the urbanization and the changes in urban planning. Urban land use/land cover of Hanoi city in 1993, 2000, 2007, 2012, and 2015 is described using LANDSAT satellite images. Land use/land cover of Hanoi in 2030 is projected by the Markov–cellular automata, which are a hybrid model of Markov chain analysis, multi-criteria evaluation, and cellular automata. The results show that Hanoi is becoming a metropolis, gradually having more dynamics and more diversity, but having less green in its pattern until 2030. All over Hanoi city, the built-up areas expanded, while the non-built area and water bodies narrowed. Residential, industrial, commercial, and service areas grow increasingly faster and become dense in the southwestern and southeastern parts of the city. New lakescapes and water corridors orient new urban development. Green areas become smaller and more fragmented. Agricultural rings have been cleared and replaced by new urban areas. Planning and managing the urban evolution toward sustainable development are imperative in Hanoi. The methods described in this paper can be effective tools expected to help planners, managers, and residents to deal with these concerns in the future. Moreover, socioeconomic development, environmental protection, improving urban planning efficiency, and integrating local governance into urban planning should be prioritized for a sustainable Hanoi city in the future.

Keywords

Sustainable city Landscape evolution Urban growth Spatial planning Land-use/land-cover change (LULCC) Markov–Cellular Automata Hanoi city 

Notes

Acknowledgements

The authors are most in depth to Mr. Jeffrey Bauch for this most careful language revision of the manuscripts.

References

  1. Akın, A., Sunar, F., & Berberoğlu, S. (2015). Urban change analysis and future growth of Istanbul. Environmental Monitoring and Assessment, 187(8), 506.CrossRefGoogle Scholar
  2. Al-Bakri, J. T., Duqqah, M., & Brewer, T. (2013). Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. Geographic Information System, 5, 509–519.CrossRefGoogle Scholar
  3. Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301.CrossRefGoogle Scholar
  4. Al-sharif, A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the Chi squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30(8), 858–881.CrossRefGoogle Scholar
  5. Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Applied Earth Observation and Geoinformation, 21, 265–275.CrossRefGoogle Scholar
  6. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.CrossRefGoogle Scholar
  7. Cobbinah, P. B., Erdiaw-Kwasie, M. O., & Amoateng, P. (2015). Africa’s urbanisation: Implications for sustainable development. Cities, 47, 62–72.CrossRefGoogle Scholar
  8. Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environmental Management, 28(5), 611–621.CrossRefGoogle Scholar
  9. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing and Environment, 37, 35–46.CrossRefGoogle Scholar
  10. Cruz, R. V., & Amado, M. P. (2015). Construction of a sustainable island city: The case of Cape Verde. Energy Procedia, 74, 1476–1489.CrossRefGoogle Scholar
  11. Du Quan, V. V., & Nguyen, A. T. (2012). Predicting landscape development based on Markov–cellular automata and Hexagonal Grid Analysis. In A. T. Nguyen (Ed.), A new approach to landscape change modeling: Integrating remote sensing, GIS and fractal analysis (pp. 2009–2232). Hanoi: TheGioi publisher.Google Scholar
  12. Esch, T., Marconcini, M., Marmanis, D., Zeidler, J., Elsayed, S., Metz, A., et al. (2014). Dimensioning urbanization—An advanced procedure for characterizing human settlement properties and patterns using spatial network analysis. Applied Geography, 55, 212–228.CrossRefGoogle Scholar
  13. Estoque, R. C., Murayama, Y., & Akiyama, C. M. (2015). Pixel-based and object-based classifications using high- and medium-spatial-resolution imageries in the urban and suburban landscapes. Geocarto International, 30(10), 1113–1129.CrossRefGoogle Scholar
  14. Fan, P., Chen, J., & John, R. (2016). Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environmental Research, 144, 96–112.CrossRefGoogle Scholar
  15. Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of Cellular Automaton and Markov model. Ecological Modelling, 222, 3761–3772.CrossRefGoogle Scholar
  16. Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov–CA. Applied Geography, 63, 101–112.CrossRefGoogle Scholar
  17. Ho, D. D., & Shibayama, M. (2009). Studies on Hanoi urban transition in the late 20th century based on GIS/RS. Southeast Asian Studies, 46, 532–546.Google Scholar
  18. Hossein, S. M., & Marco, H. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149.CrossRefGoogle Scholar
  19. Jafar, N., Alireza, G., Reza, A., Shahrzad, F., & Mahsa, A. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39, 5565–5573.CrossRefGoogle Scholar
  20. Jenerette, D. G., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona—Phoenix region, USA. Landscape Ecology, 16(7), 611–626.CrossRefGoogle Scholar
  21. Kityuttachai, K., Tripathi, N. K., Tipdecho, T., & Shrestha, R. (2013). CA–Markov analysis of constrained coastal urban growth modeling: Hua Hin Seaside City, Thailand. Sustainability, 5, 1480–1500.CrossRefGoogle Scholar
  22. Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modeling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145–156.CrossRefGoogle Scholar
  23. Labbé, D. (2011). A short history of urban and regional development in the Red River Delta (p. 53). Vancouver: University of British Columbia. ISBN 978-2-89575-242-4.Google Scholar
  24. Liu, Y. (2008). Modelling urban development with geographical information systems and cellular automata (p. 186). Boca Raton: CRC Press.CrossRefGoogle Scholar
  25. Luo, G., Amuti, T., Zhu, L., Mambetov, B. T., Maisupova, B., & Zhang, C. (2014). Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata–Markov model. Regional Environmental Change, 15, 277–289.CrossRefGoogle Scholar
  26. Maithani, S. (2010). Cellular automata based model of urban spatial growth. The Indian Society of Remote Sensing, 38, 604–610.CrossRefGoogle Scholar
  27. Marín, S. L., Nahuelhual, L., Echeverría, C., & Gran, W. E. (2011). Projecting landscape changes in southern Chile: Simulation of human and natural processes driving land transformation. Ecological Modelling, 222, 2841–2855.CrossRefGoogle Scholar
  28. Moghadam, S. H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains–cellular automata urban growth model. Applied Geography, 40, 140–149.CrossRefGoogle Scholar
  29. Moskal, M. L., Styers, D. M., & Halabisky, M. (2011). Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sensing, 3, 2243–2262.CrossRefGoogle Scholar
  30. Nguyen, V. T., Dang, T. L., Nguyen, A. T., Tran, D. L., & Hens, L. (2017). Shifting challenges for coastal green cities. Vietnam Journal of Earth Sciences, 39(2), 109–129.Google Scholar
  31. Nguyen, Q., & Kammeier, H. D. (2002). Changes in the political economy of Vietnam and their impacts on the built environment of Hanoi. Cities, 19(6), 373–388.CrossRefGoogle Scholar
  32. Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39(7), 5565–5573.CrossRefGoogle Scholar
  33. Omar, N. Q., Ahamad, M. S. S., Hussin, W. M. A. W., Samat, N., & Ahmad, S. Z. B. (2014). Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. Indian Society of Remote Sensing, 42(1), 165–178.CrossRefGoogle Scholar
  34. Pan, Y., Zhai, M., Lin, L., Lin, Y., Cai, J., Deng, J., et al. (2016). Characterizing the spatiotemporal evolutions and impact of rapid urbanization on island sustainable development. Habitat International, 53, 215–227.CrossRefGoogle Scholar
  35. Parenteau, R., Charbonneau, F., Pham, K. T., Nguyen, B. D., Tran, H., Nguyen, H. M., et al. (1995). Impact of restoration in Hanoi’s French colonial quarter. Cities, 12, 163–173.CrossRefGoogle Scholar
  36. Pham, D. U., & Nakagoshi, N. (2008). Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban Forestry & Urban Greening, 7(1), 25–40.CrossRefGoogle Scholar
  37. Phuong, L. T. M., & Len, N. T. (2011). Oriented classification of objected images for studying urban. Scientific architecture and construction, 6, 54–56.Google Scholar
  38. Ratiu, D. E. (2013). Creative cities and/or sustainable cities: Discourses and practices. City, Culture and Society, 4(3), 125–135.CrossRefGoogle Scholar
  39. Shen, L., & Zhou, J. (2014). Examining the effectiveness of indicators for guiding sustainable urbanization in China. Habitat International, 44, 111–120.CrossRefGoogle Scholar
  40. Song, Q., Li, J., Duan, H., Yu, D., & Wang, Z. (2017). Towards to sustainable energy-efficient city: A case study of Macau. Renewable and Sustainable Energy Reviews, 75, 504–514.CrossRefGoogle Scholar
  41. Sun, Y., Tong, S. T. Y., Fang, M., & Yang, Y. J. (2013). Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: An integrated approach of geospatial modeling and analytics. Environment, Development and Sustainability, 15, 1495–1515.CrossRefGoogle Scholar
  42. Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3, 2148–2165.CrossRefGoogle Scholar
  43. Tsarouchi, G. M., Mijica, A., Moulds, S., & Buytaert, W. (2014). Historical and future land-cover changes in the Upper Ganges basin of India. Remote Sensing, 35(9), 3150–3176.CrossRefGoogle Scholar
  44. Verburg, P. H., Nijs, T. C. M., Eck, J. R., Visser, H., & Jong, K. (2004). A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28, 667–690.CrossRefGoogle Scholar
  45. Vietnamese Ministry of Construction (MOC). (2016). Report on urban infrastructure development in Vietnam 2012–2015, Hanoi city (pp. 52–53). Hanoi, Vietnam.Google Scholar
  46. Vietnamese Ministry of Planning and Investment (MPI). (2011). Migration and urbanization in Vietnam: Patterns, trends and differentials. Vietnam population and housing census 2009. Hanoi, Vietnam.Google Scholar
  47. Waseem, M., Halmy, A., Gesster, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov–CA. Applied Geography, 63, 101–112.CrossRefGoogle Scholar
  48. WB. (2011). Vietnam urbanization review: technical assistance report (p. 263). Washington, DC: World Bank.Google Scholar
  49. Yagoub, M. M., & Al Bizreh, A. A. (2014). Prediction of land cover change using Markov and cellular automata models: case of Al-Ain, UAE, 1992–2030. The Indian Society of Remote Sensing, 42, 665–671.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Thinh An Nguyen
    • 1
    Email author
  • Phuong Minh Thi Le
    • 2
  • Tam Minh Pham
    • 1
  • Huong Thi Thu Hoang
    • 3
  • Minh Quang Nguyen
    • 4
  • Hoa Quynh Ta
    • 4
  • Hanh Thi My Phung
    • 4
  • Ha Thi Thu Le
    • 5
  • Luc Hens
    • 6
  1. 1.Hanoi University of Natural Resources and EnvironmentHanoiVietnam
  2. 2.Hanoi Architectural UniversityHanoiVietnam
  3. 3.VNU University of SciencesHanoiVietnam
  4. 4.Hanoi National University of Civil EngineeringHanoiVietnam
  5. 5.Hanoi University of Mining and GeologyHanoiVietnam
  6. 6.Vlaamse Instelling voor Technologisch Onderzoek (VITO)MolBelgium

Personalised recommendations