Environment, Development and Sustainability

, Volume 21, Issue 1, pp 37–50 | Cite as

A review of the ethnopharmacology, phytochemistry and pharmacological relevance of the South African weed Solanum sisymbriifolium Lam. (Solanaceae)

  • Garland K. MoreEmail author


Solanum sisymbriifolium Lam. also known as “wild tomato” is a traditional medicine used by indigenous people of Central and South America, to treat both veterinary and human diseases. Various parts of the wild tomato have been widely used in prevention and treatment of numerous diseases including hypertension, diarrhoea, and respiratory and urinary tracts infections. The traditional uses of this plant has attracted researchers to investigate its efficacy using different in vivo and in vitro biological assays, identify and isolate phytochemicals from different parts of this plant. Biological activities of different parts of the plant reported include anti-microbial, antioxidant, anti-inflammatory, analgesic, anti-diabetic, cytotoxicity, hepatoprotective, anti-cancer, larvicidal and piscicidal activity. Compound classes including steroidal saponin, spirostane saponins, glycoalkaloids, steroidal alkaloids, pyrrolidine alkaloids, sterols, steroid glycosides and lignans were isolated from different parts of S. sisymbriifolium and reported to exhibit biological activities. This review intends to document the ethnopharmacological uses, phytochemistry, pharmacological activities and toxicity aspects of the South African weed, S. sisymbriifolium. To achieve this, textbooks and electronic databases were used to source the necessary peer-reviewed data. Research reports documented in this review have shown that S. sisymbriifolium has potential to be a contender for the treatment and management of numerous diseases, and a source of new pharmaceutical drugs. However, further research still needs to be conducted in order to fully understand the mechanisms of action of reported bioactive molecules.


Solanum sisymbriifolium Ethnopharmacology phytochemistry Hypertensive diseases Diarrhoea Respiratory Urinary tract infections 



The author is grateful to Mr. Lutendo Mugwedi from the University of KwaZulu-Natal School of Agricultural, Earth and Environmental Sciences Land Use Planning and Management; Ms Christina Chokwe from the University of South Africa, College of Science, Engineering and Technology; Dr Khayalethu Ntushelo, Dr Timothy Sibanda and Ms Itumeleng Setshedi, from the University of South Africa, College of Agriculture and Environmental Sciences; and University of South Africa for funding.


Funding was provided by NRF-Thuthuka (Grant No. TTK150624120749)

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Ethical standards

No experiments were conducted in this review paper, and all institutional ethical standards were followed.


  1. Alonso, J. (2004). Espina colorada Tratado de fitofármacos y nutracéuticos. In: Mestre, E.O. (Ed.), Editorial corpus, Santa Fe Argentina, pp. 456–458.Google Scholar
  2. Antonio, J. M., Gracioso, J. S., Toma, W., Lopez, L. C., Oliveira, F., & Souza-Brito, A. R. M. (2004). Antiulcerogenic activity of ethanol extract of Solanum variabile (false “jurubeba”). Journal of Ethnopharmacology, 93, 83–88.CrossRefGoogle Scholar
  3. Apu, A. S., Bhuyan, S. H., Matin, M., Hossain, F., Khatun, F., & Jamaluddin, A. T. M. (2013). Analgesic, neuropharmacological, anti-diarrheal, and cytotoxic activities of the extract of Solanum sisymbriifolium (Lam.) leaves. Avicenna Journal of Phytomedicine, 3, 302–312.Google Scholar
  4. Arenas, P., & Scarpa, G. (2007). Edible wild plants of the Chorote Indians, Gran Chaco, Argentina. Botanical Journal of the Linnean Society, 153, 73–85.CrossRefGoogle Scholar
  5. Bagalwa, M., Voutquenne-Nazabadioko, L., Sayagh, C., & Bashwira, A. S. (2010). Evaluation of the biological activity of the molluscicidal fraction of Solanum sisymbriifolium against non-target organisms. Fitoterapia, 81, 767.CrossRefGoogle Scholar
  6. Barbosa-Filho, J. M., Agra, M. F., Oliveira, R. A. G., Paulo, M. Q., Troling, G., Cunha, E. V. L., et al. (1991). Chemical and pharmacological investigation of Solanum species of Brazil: A search for solasodine and other potentially useful therapeutic agents. Memórias do Instituto Oswaldo Cruz, 86, 189–191.CrossRefGoogle Scholar
  7. Bean, A. R. (2006). Solanum species of Eastern Australia, Version: 8th October 2006.Google Scholar
  8. Bhutani, K. K., Paul, A. T., Fayad, W., & Linder, S. (2010). Apoptosis inducing activity of steroidal constituents from Solanum xanthocarpum and Asparagus racemosus. Phytomedicine, 17, 789–793.CrossRefGoogle Scholar
  9. CARA. (2002). Does exist in the text and in the reference list: Conservation of Agriculture Resources Act 1983 (Act 43 of 1983), 2002.Google Scholar
  10. Chakravarty, A. K., Mukhopadhyay, S., Saha, S., & Pakrashi, S. C. (1996). A neolignan and sterols in fruits of Solanum sisymbrifolium. Phytochemistry, 41, 935–939.CrossRefGoogle Scholar
  11. Cham, B. E., Gilliver, M., & Wilson, L. (1987). Anti-tumor effects of glycoalkaloids isolated from Solanum sodomaeum L. Planta Medica, 53, 34–36.CrossRefGoogle Scholar
  12. Chand, R., Kumar, S., Sharma, A. K., & Srivastava, L. (1995). Anti-convulsant activity of solasodine isolated from Solanum sisymbriifolium fruits in rodents. Indian Drugs, 32, 362.Google Scholar
  13. Chauhan, K., Sheth, N., Ranpariya, V., & Parmar, S. (2011). Anti-convulsant activity of solasodine isolated from Solanum sisymbriifolium fruits in rodents. Pharmaceutical Biology, 49, 194–199.CrossRefGoogle Scholar
  14. Chifundera, K. (1998). Livestock diseases and the traditional medicine in the Bushy area, Kivu Province, Democratic Republic of Congo. African Study Monographs, 19, 13–33.Google Scholar
  15. Chifundera, K. (2001). Contribution to the inventory of medicinal plants from the Bushy area, South Kivu Province, Democratic Republic of Congo. Fitoterapia, 72, 351–368.CrossRefGoogle Scholar
  16. Conservation of Agriculture Resources Act 1983. (Act 43 of 1983). (2002).Google Scholar
  17. Dias, M. C., Conceição, I. L., Abrantes, I., & Cunha, M. J. (2012). Solanum sisymbriifolium: A new approach for the management of plantparasitic nematodes. European Journal of Plant Pathology, 133, 171–179.CrossRefGoogle Scholar
  18. Emmanuel, S., Ignacimuthu, S., Perumalsamy, R., & Amalraj, T. (2006). Anti-inflammatory activity of Solanum trilobatum. Fitoterapia, 77, 611–612.CrossRefGoogle Scholar
  19. Encyclopedia of Life. (2009). Solanum sisybriifolium Lam.Google Scholar
  20. Evans, W. C., & Somanabandhu, A. (1980). Nitrogen-containing non-steroidal secondary metabolites of Solanum, Cyphomandra. Lycianthes and Margaranthus. Phytochemistry, 19, 2351.CrossRefGoogle Scholar
  21. Ferro, E. A., Alvarenga, N. L., Ibarrola, D. A., Hellion-Ibarrola, M. C., & Ravelo, A. G. (2005). A new steroidal saponin from Solanum sisymbriifolium roots. Fitoterapia, 76, 577–579.CrossRefGoogle Scholar
  22. Filho, V. C., Meyre-Silva, C., Niero, R., Mariano, L. N. B., & do Nascimento, F. G. et al. (2013). Evaluation of antileishmanial activity of selected Brazilian plants and identification of the active principles. Evidence-Based Complementary and Alternative Medicine, 2013, 7.CrossRefGoogle Scholar
  23. Filipoy, A. J. (1994). Medicinal plants of the Pilaga of Central Chaco. Journal of Ethnopharmacology, 44, 181–193.CrossRefGoogle Scholar
  24. Gandhi, G. R., Ignacimuthu, S., & Paulraj, M. G. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows anti-diabetic and antioxidant effects in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 49, 2725–2733.CrossRefGoogle Scholar
  25. Gonzales Torrez, D. M. (1984). Catálogo de plantas medicinales (y alimenticias y útiles) usadas en el Paraguay (pp. 312–452). El País Asunción: Reimpresión.Google Scholar
  26. Gupta, M. P. (1995). 270 Plantas medicinales iberoamericanas. Programa Iberoamericano dé Ciencia y Tecnología (CYTED) Subprograma de Química fina farmacéutica. Convenio Andrés Bello, pp. 536–537.Google Scholar
  27. Gupta, V. K., Simlai, A., Tiwari, M., Bhattacharya, K., & Roy, A. (2014). Phytochemical contents, antimicrobial and antioxidative activities of Solanum sisymbriifolium. Journal of Applied Pharmaceutical Science, 4, 075–080.Google Scholar
  28. Hill, M. P., & Hulley, P. E. (1995). Biology and host range of Gratianaspadicea (Klug, 1829) (Coleoptera: Chrysomelidae: Cassidinae), a potential biological control agent for the weed Solanum sisymbriifolium Lamarck (Solanaceae) in South Africa. Biological Control, 5, 345–352.CrossRefGoogle Scholar
  29. Hnatsczyn, O., Arenas, P., Moreno, A. R., Rondina, R. D. V., & Cossío, J. D. (1974). Preliminary phytochemical study of Paraguayan medical plants, plant regulating fertility from medicinal folkfore. Rev Soc Cient (Asunción), 14, 23.Google Scholar
  30. Huxley, A. (1992). The new RHS dictionary of gardening. London: MacMillan Press.Google Scholar
  31. Ibarrola, D. A., Hellión-Ibarrola, M. C., Montalbetti, Y., Heinichen, O., Alvarenga, N., & Figueredo, A. (2000). Isolation of hypotensive compounds from solanum sisymbriifolium Lam. Journal of Ethnopharmacology, 70, 301.CrossRefGoogle Scholar
  32. Ibarrolla, D. A., Hellion-Ibarrola, M. C., Alvarenga, N. L, Ferro, E. A., Hatakeyama, N., & Shibuya, N. (2006). Cardiovascular action of nuatigenosido from Solanum sisymbriifolium. Parmaceutical Biology, 44, 378–381.CrossRefGoogle Scholar
  33. Ibarrola, D. A., Hellión-Ibarrola, M. C., Montalbetti, Y., Heinichen, O., Campuzano, M. A., Kennedy, M. L., et al. (2011). Antihypertensive effect of nuatigenin-3-O-β-chacotriose from Solanum sisymbriifolium Lam. (Solanaceae) (ñuatî pytâ) in experimentally hypertensive (ARH + DOCA) rats under chronic administration. Phytomedicine, 18, 634–640.CrossRefGoogle Scholar
  34. Ibarrola, D. A., Ibarrola, M. H., Vera, C., Montalbetti, Y., & Ferro, E. A. (1996). Hypotensive effect of crude root extract of Solanum sisymbriifolium (Solanaceae) in normo- and hypertensive rats. Journal of Ethnopharmacology, 54, 7.CrossRefGoogle Scholar
  35. King, A. M., Brudvig, R., & Byrnem, J. (2011). Biological control of dense-thorned bitter apple, Solanum sisymbriifolium Lam. (Solanaceae), in South Africa. African Entomology, 19, 427–433.CrossRefGoogle Scholar
  36. Lecanu, L., Hashim, A. I., McCourty, A., Giscos-Douriez, I., Dinca, I., Yao, W., et al. (2011). The naturally occurring steroid solasodine induces neurogenesis in vitro and in vivo. Neuroscience, 183, 251–264.CrossRefGoogle Scholar
  37. Liu, X., Zhao, M., Wang, J., Yang, B., & Jiang, Y. (2008). Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of Food Composition and Analysis, 21, 219–228.CrossRefGoogle Scholar
  38. Maheshwari, J. K., Rao, B. G., Kumar, J. R., & Rao, T. M. (2013). Evaluation of in-vitro antibacterial activity of Solanum Sisymbrifolium aerial parts. International Journal of Pharmaceutical Sciences Review, 21, 290–292.Google Scholar
  39. Maldoni, B. E. (1984). Alkaloids en dos species de Lycium. Anales de la Asociación Química Argentina de la Asociación Química Argentina, 72, 265.Google Scholar
  40. Martınez-Crovetto, R. (1981). Plantas reguladoras de la fecundidad utilizadas en la medicina popular del nordeste argentino. Parodiana, 1, 97–117.Google Scholar
  41. Mazumdar, B. C. (1984). Steroidal sapogenins in two wild species of Solanum. Science and Culture, 50, 122–123.Google Scholar
  42. Mohan, M., Kamble, S., Gadhi, P., & Kasture, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 48, 436–440.CrossRefGoogle Scholar
  43. Monteiro, F. S., Silva, A. C. L., Martins, I. R. R., Correia, A. C. C., Basilio, I. J. D., Agra, M. F., et al. (2012). Vasorelaxant action of the total alkaloid fraction obtained from Solanum paludosum Moric. (Solanaceae) involves NO/cGMP/PKG pathway and potassium channels. Journal of Ethnopharmacology, 141, 895–900.CrossRefGoogle Scholar
  44. Nakamura, T., Komori, C., Lee, Y., Hashimoto, F., Yahara, S., Nohara, T., et al. (1996). Cytotoxic activities of solanum steroidal glycosides. Biological and Pharmaceutical Bulletin, 19, 564–566.CrossRefGoogle Scholar
  45. National Environmental Management and Biodiversity Act. (2004). Chapter 5, Part 2, 60, 73.Google Scholar
  46. Niero, R., Da Silva, I. T., & Tonial, G. C. (2006). Cilistepoxide and cilistadiol, twoo new withanolides from Solanum sisymbriifolium. Natural Product Research, 20, 1164–1168.CrossRefGoogle Scholar
  47. Oliveira-Filho, A. T., & Oliveira, L. C. A. (1988). Biologia floral de uma população de S. lycocarpum St. Hill. (Solanaceae) em Lavras MG. Revista Brasileira de Botânica, 11, 23–32.Google Scholar
  48. Ono, M., Takara, Y., Egami, M., Uranaka, K., Yoshimitsu, H., Matsushita, S., et al. (2006). Steroidal alkaloid glycosides, esculeosides C and D, from the ripe fruit of cherry tomato. Chemical and Pharmaceutical Bulletin (Tokyo), 54, 237–239.CrossRefGoogle Scholar
  49. Pandeya, S. C., Saratbabu, G. V., & Bhatt, A. B. (1981). A quick method for estimation of solasodine in leaves and berries of Solanum sisymbrifolium Lam. Indian Journal of Experimental Biology, 19, 1207–1208.Google Scholar
  50. Patel, K., Singh, R. B., & Patel, D. K. (2013). Medicinal significance, pharmacological activities, and analytical aspects of solasodine: A concise report of current scientific literature. Journal of Acute Disease, 2, 92–98.CrossRefGoogle Scholar
  51. Perez, C., & Anesini, C. (1994). Inhibition of Pseudomonas aeruginosa by Argentinean medicinal plants. Fitoterapia, 65, 169.Google Scholar
  52. Pestana, M., Rodrigues, M., Teixeira, L., & Cordeiro, N. (2014). In vitro evaluation of nematicidal properties of Solanum sisymbriifolium and S. nigrum extracts on Pratylenchus goodeyi. Nematology, 16, 41–51.CrossRefGoogle Scholar
  53. Rahman, S. (2012). Antioxidant, analgesic, cytotoxic and antidiarrheal activities of ethanolic Zizyphus mauritiana bark extract. Oriental Pharmacy and Experimental Medicine, 12, 67–73.CrossRefGoogle Scholar
  54. Raza, S. H., Athar, H. R., Ashraf, M., & Hameed, A. (2007). Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60, 368–376.CrossRefGoogle Scholar
  55. Ren, J., Feng, G. N., Wang, M. W., & Sun, L. X. (2007). Primary study on the anti-tumor effect of ethanol extracts of Solanum Bradshaw D, Norman R, Pieterse D, Levitt N, Group SACRAC. Estimating the burden of disease attributable to diabetes in South Africa in 2000. South African Medical Journal, 97, 700–705.Google Scholar
  56. Schmeda-Hirschmann, G., Feresin, G., & Tapia, A. (2005a). Proximate composition and free radical scavenging activity of edible fruits from the Argentinian Yungas. Journal of the Science of Food and Agriculture, 85, 1357–1364.CrossRefGoogle Scholar
  57. Schmeda-Hirschmann, G., Feresin, G., Tapia, A., Hilgert, N., & Theoduloz, C. (2005b). Proximate composition and free radical scavenging activity of edible fruits from the Argentinian Yungas. Journal of the Science Food and Agriculture, 85, 1357–1364.CrossRefGoogle Scholar
  58. Scholte, K. (2000). Screening of non-tuber bearing Solanaceae for resistance and induction of juvenile hatch of potato cyst nematodes and their potential for trap cropping. Annals of Applied Biology, 136, 239–246.CrossRefGoogle Scholar
  59. Scholte, K., & Vos, J. (2000). Effects of potential trap crops and planting date on soil infestation with potato cyst nematodes and root-knot nematodes. Annals of Applied Biology, 137, 153–164.CrossRefGoogle Scholar
  60. Sharma, M., Romana, M., Menaria, J., Devi, S., & Sheikh, M. A. (2014). In vitro antioxidant potential of various extracts of Solanum nigrum L. The Pharmaceutical and Chemical Journal, 1, 6–9.Google Scholar
  61. Siddiqi, T. O., Ahmad, J., Khan, S. U., Jayed, K., Khan, M. S., & Philipp, Y. (1990). Pharmacognostical studies of the flowers of Solanum sisymbrifolium Lamk. Journal of Science, 119, 41.Google Scholar
  62. Simoes, C. M. O., Falkenberg, M., Auler, M. L., Schenkel, E. P., & Amoros, M. (1999). Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine, 6, 205.CrossRefGoogle Scholar
  63. South African National Biodiversity Institute. (2001). Declared weeds and alien invader plants of South Africa list.Google Scholar
  64. Sun, L. X., Fu, W. W., Li, W., Bi, K. S., & Wang, M. W. (2006). Diosgenin glucuronides from Solanum lyratum and their cytotoxicity against tumor cell lines. Zeitschrift für Naturforschung, 61, 171–176.CrossRefGoogle Scholar
  65. Symon, D. E. (1981). A revision of the genus Solanum in Australia. Journal of the Adelaide Botanic Gardens, 4, 1–367.Google Scholar
  66. Tavares, D. C., Munari, C. C., Araujo, M. G., Beltrame, M. C., Furtado, M. H., Goncalves, C. C., et al. (2011). Anti-mutagenic potential of Solanum lycocarpum against in-duction of chromosomal aberrations in V79 and micronuclei in mice by doxorubicin. Planta Medica, 77, 1489–1494.CrossRefGoogle Scholar
  67. Timmermans, B. G. H. (2005). Solanum sisymbriifolium (Lam.): A crop for potato cyst nematodes, p. 135. PhD Thesis, Wageningen University, the Netherlands.Google Scholar
  68. Timmermans, B. G. H., Vos, J., Stomph, T. J., Van Nieuwburg, J., & Van der Putten, P. E. L. (2006). Growth duration and root length density of Solanum sisymbriifolium (Lam.) as determinants of hatching of Globodera pallida (Stone). Annals of Applied Biology, 148, 213–222.CrossRefGoogle Scholar
  69. Tschesche, R., & Richert, K. H. (1964). Uber saponineder spirostanolreihe-XI.Nuatigenin, eincholegenin-analogon des pflanzenreiches. Tetrahedron, 20, 387–398.CrossRefGoogle Scholar
  70. Uddin, S. J., Rouf, R., Shilpi, J. A., Alamgir, M., & Nahar, L. (2008). Screening of some Bangladeshi plants for in vitro antibacterial activity. Oriental Pharmacy and Experimental Medicine, 6, 316–321.CrossRefGoogle Scholar
  71. United Nations Children’s Fund/WHO. (2009). Diarrhoea: Why children are still dying and what can be done, Geneva.Google Scholar
  72. Vaghela, J., Rana, M., Savalia, V., & Sheth, N. R. (2009). Evaluation of antifungal activity of methanolic extract of leaves and stems of solanum sisymbriifolium LAM. Pharmacologyonline, 3, 1–5.Google Scholar
  73. Van Wyk, A. E., & Malan, S. J. (1997). Field guide to the wild flowers of the Highveld. Cape Town: Struik.Google Scholar
  74. Wanyonyia, A. W., Chhabra, C. S., Mkoji, G., Eilertc, U., & Njuea, W. M. (2002). Bioactive steroidal alkaloid glycosides from Solanum aculeastrum. Phytochemistry, 59, 79–84.CrossRefGoogle Scholar
  75. Yalin, W., Yuanjiang, P., & Cuirong, S. (2005). Isolation, purification and structural investigation of a water-soluble polysaccharide from Solanum lyratum Thunb. International Journal of Biological Macromolecules, 36, 241–245.CrossRefGoogle Scholar
  76. Zulfiker, A. H. M., Rahman, M. M., Hossain, M. K., Hamid, K., Mazumdar, M. E. H., & Rana, M. S. (2010). In vivo analgesic activity of ethanolic extracts of two medicinal plants Scoparia dulcis L. and Ficus racemosa. Biology and Medicine, 2, 42–48.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.College of Agriculture and Environmental Sciences, CAES LaboratoriesUniversity of South AfricaFloridaSouth Africa

Personalised recommendations