Advertisement

Modelling the Distribution and Quality of Sand and Gravel Resources in 3D: a Case Study in the Thames Basin, UK

  • K. MeeEmail author
  • B. P. Marchant
  • J. M. Mankelow
  • T. P. Bide
Article

Abstract

Three-dimensional (3D) models are often utilised to assess the presence of sand and gravel deposits. Expanding these models to provide a better indication of the suitability of the deposit as aggregate for use in construction would be advantageous. This, however, leads to statistical challenges. To be effective, models must be able to reflect the interdependencies between different criteria (e.g. depth to deposit, thickness of deposit, ratio of mineral to waste, proportion of ‘fines’) as well as the inherent uncertainty introduced because models are derived from a limited set of boreholes in a study region. Using legacy borehole data collected during a systematic survey of sand and gravel deposits in the UK, we have developed a 3D model for a 2400 km2 region close to Reading, southern England. In developing the model, we have reassessed the borehole grading data to reflect modern extraction criteria and explored the most suitable statistical modelling technique. The additive log-ratio transform and the linear model of coregionalization have been applied, techniques that have been previously used to map soil texture classes in two dimensions, to assess the quality of sand and gravel deposits in the area. The application of these statistical techniques leads to a model which can be used to generate thousands of plausible realisations of the deposit which fully reflect the extent of model uncertainty. The approach offers potential to improve regional-scale mineral planning by providing an enhanced understanding of sand and gravel deposits and the extent to which they meet current extraction criteria.

Keywords

3D model Mineral resource model Additive log-ratio transform Linear model of coregionalization 

Notes

Acknowledgements

This paper is published with the permission of the Executive Director of the British Geological Survey (NERC). It was funded by BGS National Capability funding from NERC. Contains Ordnance Survey Data © Crown copyright and database rights [2018]. Ordnance Survey Licence no. 100021290. The authors would like to thank Dr. David Malone, Andy Kingdon, John Williams and another anonymous reviewer for constructive reviews which have greatly improved this manuscript. Maps were created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com.

References

  1. 1.
    ONS (2016) UK GDP (O) low level aggregates. Office for National Statistics. https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/ukgdpolowlevelaggregates
  2. 2.
    Wrighton C.E., McEvoy E.M. and Bust R (2011) Mineral safeguarding in England: Good practice advice. British Geological Survey, 46pp. Open report (OR/11/046).Google Scholar
  3. 3.
    Glacken I.M. and Snowden D.V. (2001) Mineral resource estimations, in mineral resource and ore reserve estimation – the AusIMM guide to good practice (Ed. AC Edwards), pp. 189–198 The Australian Institute of Mining and Metallurgy, Melbourne.Google Scholar
  4. 4.
    Rossi M.E. and Deutsch C.V. (2014) Mineral resource estimation. Springer Verlag.Google Scholar
  5. 5.
    Van der Meulen M.J., Doornenbal J.C., Gunnink J.L., Stafleu J., Schokker J., Vernes R.W., van Geer S.F., van Heteren S., van Leeuwen R.J.W., Bakker M.A.J., Bogaard P.J.F., Busschers F.S., Griffioen J., Gruijters S.H.L.L., Kiden P., Schroot B.M., Simmelink H.J., van Berkel W.O., ver der Krogt R.A.A., Westerhoff W.E. and van Daalen T.M. (2013) 3D geology in a 2D country: perspectives for geological surveying in the Netherlands. Geologie en Mijnbouw – Netherlands Journal of Geoscience, 92(4), 217–241.Google Scholar
  6. 6.
    Kessler H., Mathers S.J. and Sobisch H.G. (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Computers and Geosciences, 35, 1311–1321.CrossRefGoogle Scholar
  7. 7.
    Culshaw M.G. (2005) From concept towards reality: developing the attributed 3D geological model of the shallow subsurface. Quarterly Journal of Engineering Geology and Hydrogeology., 38, 231–284.CrossRefGoogle Scholar
  8. 8.
    Kearsey T., Williams J., Finlayson A., Williamson P., Dobbs M., Marchant B., Kingdon A. and Campbell D. (2015) Testing the application and limitation of stochastic simulations to predict the lithology of glacial and fluvial deposits in Central Glasgow. Engineering Geology, 187, 98–112.CrossRefGoogle Scholar
  9. 9.
    Van der Meulen M.J., van Gessel S.F. and Veldkamp K.G. (2005) Aggregate resources in the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw., 84(3), 379–387.CrossRefGoogle Scholar
  10. 10.
    Flaherty S.T., Malone D.H., Thomason J.F., Peterson E.W. and Shields W.E. (2016) Surficial geology map of the Woodstock, Illinois 7.5 minute quadrangle, Mchenry County, Illinois, scale, 1:24,000. Journal of Maps, 12(sup1), 387–391. https://doi.org/10.1080/17445647.2016.1227731.CrossRefGoogle Scholar
  11. 11.
    Pfleiderer S., Untersweg T., Heinrich M. and Weber L. (2007) The Austrian mineral resources plan – Evaluation of aggregates. Geophysical Research Abstracts Volume 9, European Geosciences Union 2007.Google Scholar
  12. 12.
    Avalos E.B., Malone D.H., Peterson E.W., Anderson W.P. and Gehrels R. (2016) Two-dimensional seismic refraction tomography of a buried Bedrock Valley at Hallsands Beach, Devon, UK: Environmental Geosciences, 23(4), 179–193. DOI:https://doi.org/10.1306/eg.07131615014.CrossRefGoogle Scholar
  13. 13.
    Lau J., Thomason J.F., Malone D.H. and Peterson E.W. (2016) Modeling the sediment fill of the upper Troy pre-glacial Bedrock Valley, McHenry County, Illinois, USA: Journal of Geoscience and Environment Protection, 4, 107–122. DOI:https://doi.org/10.4236/gep.2016.46010.CrossRefGoogle Scholar
  14. 14.
    Hartz, M. A., Malone, D. H., & Nelson, R. S. (2016). Three-dimensional modeling of a glacial valley train outwash deposit using two-dimensional seismic refraction techniques. Geosciences, 6, 1–15.  https://doi.org/10.3390/geosciences6010009.CrossRefGoogle Scholar
  15. 15.
    Regli C., Huggenberger P. and Rauber M. (2002) Interpretation of drill core and georadar data of coarse gravel deposits. Journal of Hydrology, 255, 234–252.CrossRefGoogle Scholar
  16. 16.
    Chambers J.E., Wilkinson P.B., Weller A., Meldrum P..I, Kuras O., Ogilvy R.D., Aumonier J., Bailey E., Griffiths N., Matthews B., Penn S. and Wardrop D. (2012) Characterising sand and gravel deposits using electrical resistivity tomography (ERT): case histories from England and Wales. In: Walton, Geoffrey; Hunger, Emily, (eds.) Proceedings of the 16th extractive industry geology conference, held at the University of Portsmouth 8th to 11th September 2010. Extractive industry geology conference, 166–172. http://nora.nerc.ac.uk/id/eprint/20301/1/19__Chambers_166-172_pdf.pdf.
  17. 17.
    Chambers J.E., Wilkinson P.B., Penn S., Meldrum P.I., Kuras O., Loke M.H. and Gunn D.A. (2013) River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection. Journal of Applied Geophysics, 93, 25–32. https://doi.org/10.1016/j.jappgeo.2013.03.002.CrossRefGoogle Scholar
  18. 18.
    Chambers J.E., Wilkinson P.B., Wardrop D., Hameed A., Hill I., Jeffrey C., Loke M. H., Meldrum P.I., Kuras O., Cave M. and Gunn D.A. (2012) Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177(8), 17–25. https://doi.org/10.1016/j.geomorph.2012.03.034.CrossRefGoogle Scholar
  19. 19.
    Karaka Ş.A. (2014) Defining the suitability of new crushed rock aggregate source areas in the north of Kocaeli Province using GIS. Bulletin of Engineering Geology and the Environment., 73(4), 1183–1197.Google Scholar
  20. 20.
    Falivene O., Cabrera L., Muñoz J.A., Arbués P., Fernández O. and Sáez A. (2007) Statistical grid-based facies reconstruction and modelling for sedimentary bodies. Alluvial-palustrine and turbiditic examples. Geologica Acta, 5(3), 199–230.Google Scholar
  21. 21.
    Comunian A., Renard P., Straubhaar J. and Bayer P. (2011) Three-dimensional high resolution fluvio-glacial aquifer analog – part 2: geostatistical modelling. Journal of Hydrology, 405, 10–23. https://doi.org/10.1016/j.jhydrol.2011.03.037.CrossRefGoogle Scholar
  22. 22.
    Williams J.D.O., Dobbs M.R., Kingdon A., Lark R.M., Williamson J.P., MacDonald A.M. and Ó Dochartaigh B.É. (2019) Stochastic modelling of hydraulic conductivity derived from geotechnical data; an example applied to Central Glasgow. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 108(2-3), 141-154. doi:10.1017/S1755691018000312.CrossRefGoogle Scholar
  23. 23.
    Jones L.D. and Terrington R. (2011) Modelling volume change potential in the London clay. Quarterly Journal of Engineering Geology and Hydrogeology, 44(1), 109–122. https://doi.org/10.1144/1470-9236/08-112.CrossRefGoogle Scholar
  24. 24.
    Kessler H., Mathers S.J. and Sobisch H.-G. (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Computational Geosciences, 35, 1311–1321.CrossRefGoogle Scholar
  25. 25.
    Kessler H. and Mathers S.J. (2004) From geological maps to models – finally capturing the geologists’ vision. Geoscientist, 14(10), 4–6.Google Scholar
  26. 26.
    British Geological Survey. Mineral Assessment Reports. Industrial Minerals Assessment Unit. http://www.bgs.ac.uk/mineralsuk/mines/IMAU.html
  27. 27.
    British Geological Survey. Mineral Resource Maps for the UK by planning area. http://www.bgs.ac.uk/mineralsuk/planning/resource.html
  28. 28.
    PERC (2013) Pan European standard for reporting of exploration results, mineral resources and reserves. The Pan European reserves and resources reporting committee, revision 2:29 November 2013.Google Scholar
  29. 29.
    Waters C.N., Terrington R.L., Cooper M.R., Raine R.J. and Thorpe S. (2016) The construction of a bedrock geology model for the UK: UK3D_v2015. British Geological Survey, 22. Open report (OR/15/069) (http://nora.nerc.ac.uk/512904/).
  30. 30.
    Mathers S.J. and Kessler H. (2010) Shallow sub-surface 3D geological models for Earth & Environmental Science decision making. Environmental Earth Science, 60(2), 445–448.Google Scholar
  31. 31.
    Kingdon A., Nayembil M.L., Richardson A.E. and Smith A.G. (2016) A geodata warehouse: using denormalisation techniques as a tool for delivering spatially enabled integrated geological information to geologists. Computers and Geosciences, 96, 87–97. https://doi.org/10.1016/j.cageo.2016.07.016.CrossRefGoogle Scholar
  32. 32.
    Environment Agency (2009) River basin management plan – Thames river basin district. In Publication (Vol. 651, p. 89). Bristol: Environment Agency.Google Scholar
  33. 33.
    Mathers S.J. and Smith N.J.P. (2000) Geology of the Reading District – a brief explanation of the geological map. Sheet Explanation of the British Geological Survey. 1:50 000 Sheet 268 Reading (England and Wales).Google Scholar
  34. 34.
    Royse K.R., de Freitas M., Burgess W.G., Cosgrove J., Ghail R.C., Gibbard P., King C., Lawrence U., Mortimore R.N., Owen H. and Skipper J. (2012) Geology of London, UK. Proceedings of the Geologists’ Association, 123(1), 22–45. https://doi.org/10.1016/j.pgeola.2011.07.005.CrossRefGoogle Scholar
  35. 35.
    Maddy D., Bridgland D. and Westway R. (2001) Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International, 79, 23–36.CrossRefGoogle Scholar
  36. 36.
    Squirrell H.C. (1978) The sand and gravel resources of the country around Sonning and Henley, Berkshire, Oxfordshire and Buckinghamshire: Description of 1:25000 resource sheets SU77 and SU78. Mineral Assessment Reports No. 32.Google Scholar
  37. 37.
    Mathers S.J., Burke H.F., Terrington R.L., Thorpe S., Dearden R.A., Williamson J.P. and Ford J.R. (2014) A geological model of London and the Thames Valley, southeast England. Proceedings of the Geologists’ Association, 125, 373–382. https://doi.org/10.1016/j.pgeola.2014.09.001.CrossRefGoogle Scholar
  38. 38.
    Burke H., Mathers S., Williamson J.P., Thorpe S., Ford J. and Terrington R. (2014) The London Basin superficial and bedrock LithoFrame 50 model. British Geological Survey Open Report, OR/14/029, 31.Google Scholar
  39. 39.
    Gibbard P.L. (1994) Pleistocene history of the Lower Thames valley, Cambridge University Press.Google Scholar
  40. 40.
    Gibbard P.L., Whiteman C.A. and Bridgland D.R. (1988) A preliminary report on the stratigraphy of the lower Thames valley. Quaternary Newsletter, 56, 1–8.Google Scholar
  41. 41.
    Marchant B.P. (2018) Model-based geostatistics. In: McBratney, A.B., Minasny, B., Stockmann, U. (eds), Pedometrics: a system of quantitative soil information. Springer.Google Scholar
  42. 42.
    Mallet J.L. (1992) GOCAD: a computer aided design program for geological applications. In: A.K. Turner (Ed.) Three-dimensional modelling with geoscientific information systems, NATO ASI series, 354, 123–141, Springer, Netherlands.Google Scholar
  43. 43.
    Mathworks. (2014). MATLAB and statistics toolbox release 2014b. Massachusetts, United States: The MathWorks, Inc.Natick.Google Scholar
  44. 44.
    Deutsch C.V. and Journel A.G. (1998) GSLIB: geostatistical software library and user’s guide (2nd ed.p. 369). Oxford, New York: Oxford University Press.Google Scholar
  45. 45.
    Webster R. and Oliver M.A. (2007) Geostatistics for environmental scientists (2nd ed.). Chichester: Wiley.Google Scholar
  46. 46.
    Lark R.M., Marchant B.P., Dove D., Green S.L., Stewart H. and Diesing M. (2015) Combining observations with swath bathymetry and backscatter to map seabed sediment texture classes; the empirical best linear unbiased predictor. Sedimentary Geology, 328, 17–32.CrossRefGoogle Scholar
  47. 47.
    Marchant B.P. and Lark R.M. (2007a) The Matérn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys. Geoderma, 140(4), 337–345.CrossRefGoogle Scholar
  48. 48.
    Marchant B.P. and Lark R.M. (2007b) Estimation of linear models of coregionalization by residual maximum likelihood. European Journal of Soil Science, 58(6), 1506–1513.CrossRefGoogle Scholar
  49. 49.
    Goovaerts P. (2001) Geostatistical modelling of uncertainty in soil science. Geoderma, 103, 3–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.British Geological Survey, Environmental Science CentreNottinghamUK

Personalised recommendations