Advertisement

Environmental Modeling & Assessment

, Volume 24, Issue 5, pp 517–531 | Cite as

An Integrated Multicriteria Decision Analysis System for Reducing Air Emissions from Mining Process

  • Zunaira Asif
  • Zhi ChenEmail author
Article

Abstract

The selection of a best alternative method to minimize air pollution and energy consumption for mine sites is a critical task because it encompasses evaluation of different techniques. The aim of this paper is to select most suitable technology for mining system which helps in reducing air pollution and carbon footprints by implementing the multicriteria decision analysis (MCDA) method. The existing methods or frameworks in the mining sector, which have been used in the past to select the sustainable solution, are lacking aid of MCDA, and there is a need to contribute more in this field with a promising decision system. The MCDA method is applied as a probabilistic integrated approach for a mine site in Canada. The analysis involves processing inputs to the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method which assists in identifying the alternatives, defining the criteria, and thus outranking of the final choice. Moreover, criteria weighting has been determined using analytical hierarchical process (AHP) method. Three categories: reduction of dust/fugitive emission control strategies, reduction in fuel consumption to minimize carbon footprint, and cyanide destruction methods are selected. The probability distributions of criteria weights and output flows are defined by performing uncertainty analysis using the Monte Carlo simulation (MCS). The sensitivity analysis is conducted using Spearman’s rank correlation method and walking criteria weights. The results indicate that the integrated framework provides a reliable way of selecting air pollution control solutions and help in quantifying the impact of different criteria for the selected alternatives.

Keywords

Multicriteria decision analysis PROMETHEE AHP Air pollution Carbon footprints Mining 

Notes

Supplementary material

10666_2018_9647_MOESM1_ESM.docx (104 kb)
ESM 1 (DOCX 104 kb)

References

  1. 1.
    Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., & Linkov, I. (2005). Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1(2), 95–108.CrossRefGoogle Scholar
  2. 2.
    Sadiq, R., & Tesfamariam, S. (2009). Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stochastic Environmental Research and Risk Assessment, 23(1), 75–91.CrossRefGoogle Scholar
  3. 3.
    Tesfamariam, S., & Sadiq, R. (2006). Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stochastic Environmental Research and Risk Assessment, 21(1), 35–50.CrossRefGoogle Scholar
  4. 4.
    Asif, Z., & Chen, Z. (2016). Environmental management in North American mining sector. Environmental Science and Pollution Research, 23(1), 167–179.CrossRefGoogle Scholar
  5. 5.
    Ontario Ministry of Labour (2016). Current occupational exposure limits for Ontario workplaces required under Regulation 833.Guidelines available at https://www.labour.gov.on.ca. Accessed 15 Nov 2018.
  6. 6.
    Norgate, T., & Haque, N. (2012). Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production, 29–30, 53–63.CrossRefGoogle Scholar
  7. 7.
    Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated approach. Boston: Springer Science & Business Media.  https://doi.org/10.1007/978-1-4615-1495-4.CrossRefGoogle Scholar
  8. 8.
    Yang, B., Luo, Y., & Zhou, M. (2000). A fuzzy logic-based lifecycle comparison of digital and film cameras. Proceedings of the 2000 IEEE International Symposium on Electronics and the Environment (Cat. No. 00CH37082).Google Scholar
  9. 9.
    Clímaco, J., & Craveirinha, J. (2005). Multiple criteria decision analysis–state of the art surveys. International Series in Operations Research & Management Science, 78, 899–951.Google Scholar
  10. 10.
    Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. 11.
    Mijalkovski, S., Despodov, Z., Mirakovski, D., Hadzi-Nikolova, M., Doneva, N., & Gocevski, B. (2012). Mining method selection by integrated AHP and PROMETHEE method. Annals of the Brazilian Academy of Sciences, 84(1), 219–233.CrossRefGoogle Scholar
  12. 12.
    Macharis, C., Springael, J., De Brucker, K., & Verbeke, A. (2004). PROMETHEE and AHP: The design of operational synergies in multicriteria analysis - strengthening PROMETHEE with ideas of AHP. European Journal of Operational Research, 153, 307–317.  https://doi.org/10.1016/S0377-2217(03)00153-X.CrossRefGoogle Scholar
  13. 13.
    Polat, G., Damci, A., Gurgun, A. P., & Demirli, I. (2016). Urban renewal project selection using the integration of AHP and PROMETHEE approaches. Procedia Engineering, 164, 339–346.  https://doi.org/10.1016/j.proeng.2016.11.628.CrossRefGoogle Scholar
  14. 14.
    Turcksin, L., Bernardini, A., & Macharis, C. (2011). A combined AHP-PROMETHEE approach for selecting the most appropriate policy scenario to stimulate a clean vehicle fleet. Procedia - Social and Behavioral Sciences, 20, 954–965.  https://doi.org/10.1016/j.sbspro.2011.08.104.CrossRefGoogle Scholar
  15. 15.
    Hyde, K., Maier, H. R., & Colby, C. (2003). Incorporating uncertainty in the PROMETHEE MCDA method. Journal of Multi-Criteria Decision Analysis, 12(4–5), 245–259.  https://doi.org/10.1002/mcda.361.CrossRefGoogle Scholar
  16. 16.
    Cavalcante, C. A. V., & Almeida, A. T. d. (2007). A multi-criteria decision-aiding model using PROMETHEE III for preventive maintenance planning under uncertain conditions. Journal of Quality in Maintenance Engineering, 13(4), 385–397.  https://doi.org/10.1108/13552510710829470.CrossRefGoogle Scholar
  17. 17.
    Betrie, G. D., Sadiq, R., Morin, K. A., & Tesfamariam, S. (2013). Selection of remedial alternatives for mine sites: a multicriteria decision analysis approach. Journal of Environmental Management, 119, 36–46.CrossRefGoogle Scholar
  18. 18.
    Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Science of the Total Environment, 409(19), 3578–3594.CrossRefGoogle Scholar
  19. 19.
    Yang, A. L., Huang, G. H., Qin, X. S., & Fan, Y. R. (2012). Evaluation of remedial options for a benzene-contaminated site through a simulation-based fuzzy-MCDA approach. Journal of Hazardous Materials, 213, 421–433.CrossRefGoogle Scholar
  20. 20.
    Nikolić, D., Milošević, N., Mihajlović, I., Živković, Ž., Tasić, V., Kovačević, R., & Petrović, N. (2010). Multi-criteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water, Air, and Soil Pollution, 206(1–4), 369–383.CrossRefGoogle Scholar
  21. 21.
    Elevli, B., & Demirci, A. (2004). Multicriteria choice of ore transport system for an underground mine: Application of PROMETHEE methods. Journal of the South African Institute of Mining and Metallurgy, 104, 251–256.Google Scholar
  22. 22.
    Mladineo, M., Mladineo, N., & Jajac, N. (2015). Project management in mine actions using multi-criteria-analysis-based decision support system. Croatian Operational Research Review, 5(2), 415–425.CrossRefGoogle Scholar
  23. 23.
    Gurumurthy, A., & Kodali, R. (2008). A multi-criteria decision-making model for the justification of lean manufacturing systems. International Journal of Management Science and Engineering Management, 3(2), 100–118.CrossRefGoogle Scholar
  24. 24.
    Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83.  https://doi.org/10.1504/IJSSCI.2008.017590.CrossRefGoogle Scholar
  25. 25.
    Driussi, C., & Jansz, J. (2006). Technological options for waste minimisation in the mining industry. Journal of Cleaner Production, 14(8), 682–688.CrossRefGoogle Scholar
  26. 26.
    Cecala, A. B., O’brien, A. D., Schall, J., Colinet, J. F., Fox, W. R., Franta, R. J., … Rounds, J. R. (2012). Dust control handbook for industrial minerals mining and processing. NIOSH Report of Investigation, 9689, 284.Google Scholar
  27. 27.
    Sheoran, V., Sheoran, A. S., & Poonia, P. (2013). Phytostabilization of metalliferous mine waste. Journal of Industrial Pollution Control, 29(2), 183–192.Google Scholar
  28. 28.
    Tannant D. D., & Regensburg, B. (2001). Guidelines for mine haul road design. In A guideline book (pp. 28–42). Canada: School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta.Google Scholar
  29. 29.
    Prostański, D. (2013). Use of air-and-water spraying systems for improving dust control in mines. Journal of Sustainable Mining, 12(2), 29–34.CrossRefGoogle Scholar
  30. 30.
    Bugarski, A. D., Janisko, S. J., Cauda, E. G., Patts, L. D., Hummer, J. A., Westover, C., & Terrillion, T. (2014). Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends. The Annals of Occupational Hygiene, 58(8), 971–982.  https://doi.org/10.1093/annhyg/meu049.CrossRefGoogle Scholar
  31. 31.
    Vivaldini, M., Pires, S. R. I., & de Souza, F. B. (2012). Improving logistics services through the technology used in fleet management. Journal of Information Systems and Technology Management, 9(3), 541–562.CrossRefGoogle Scholar
  32. 32.
    Eglinton, T., Hinkley, J., Beath, A., & Dell’Amico, M. (2013). Potential applications of concentrated solar thermal technologies in the Australian minerals processing and extractive metallurgical industry. JOM, 65(12), 1710–1720.CrossRefGoogle Scholar
  33. 33.
    Parga, J. R., Shukla, S. S., & Carrillo-Pedroza, F. R. (2003). Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol. Waste Management, 23(2), 183–191.CrossRefGoogle Scholar
  34. 34.
    Xu, H., Li, A., Feng, L., Cheng, X., & Ding, S. (2012). Destruction of cyanide in aqueous solution by electrochemical oxidation method. International Journal of Electrochemical Science, 7, 7516–7525.Google Scholar
  35. 35.
    Rio Tinto. (2016). Available at http://www.kennecott.com. Accessed 21 Sep 2017.
  36. 36.
    Super Decisions tool. (2017).  Available at https://www.superdecisions.com. Accessed 16 Dec 2017.
  37. 37.
    Klanfar, M., Korman, T., & Kujundžić, T. (2016). Fuel consumption and engine load factors of equipment in quarrying of crushed stone. Tehnicki Vjesnik - Technical Gazette.  https://doi.org/10.17559/TV-20141027115647.
  38. 38.
    Keller, J., Milczarek, M., Yao, T., & Buchanan, M. (2010). The effect of tailings characteristics on cover system success. In The Organizing Committee of the 14th International Conference on Tailings and Mine Waste (Ed.): Tailings and Mine Waste 2010 (p. 121). London: CRC Press.Google Scholar
  39. 39.
    Kecojevic, V., & Komljenovic, D. (2011). Haul truck fuel consumption and CO2 emission under various engine load conditions. SME Annual Meeting and Exhibit and CMA 113th National Western Mining Conference 2011.Google Scholar
  40. 40.
    Lindgren, M., Larsson, G., & Hansson, P. A. (2010). Evaluation of factors influencing emissions from tractors and construction equipment during realistic work operations using diesel fuel and bio-fuels as substitute. Biosystems Engineering.  https://doi.org/10.1016/j.biosystemseng.2010.07.010.CrossRefGoogle Scholar
  41. 41.
    Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles - a review. Energy Conversion and Management.  https://doi.org/10.1016/j.enconman.2013.05.019.CrossRefGoogle Scholar
  42. 42.
    Gokhale, B. V. (2011). Rotary drilling and blasting in large surface mines (p. 744). New York: Taylor and Francis.  https://doi.org/10.1007/s13398-014-0173-7.2.
  43. 43.
    Asif, Z., Chen, Z., & Han, Y. (2018). Air quality modeling for effective environmental management in the mining region. Journal of the Air & Waste Management Association, 68(9), 1001–1014.  https://doi.org/10.1080/10962247.2018.1463301.CrossRefGoogle Scholar
  44. 44.
    Chen, Z., Zhao, L., & Lee, K. (2010). Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach. Environmental Modelling and Software, 25(6), 782–792.  https://doi.org/10.1016/j.envsoft.2010.01.001.CrossRefGoogle Scholar
  45. 45.
    Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: waste production must peak this century. Nature, 502(7473), 615–617.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Building, Civil and Environmental Engineering (BCEE), Faculty of Engineering and Computer SciencesConcordia UniversityMontrealCanada
  2. 2.Institute of Environmental Engineering and ResearchUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations