Environmental Modeling & Assessment

, Volume 23, Issue 6, pp 691–701 | Cite as

The Contribution of Mathematical Models to Climate Policy Design: a Researcher’s Perspective



Energy and the environment are closely interconnected. In particular, energy-related carbon dioxide emissions are major contributors to climate change. To analyze options within the energy sector to curb greenhouse gas emissions, or to study alternative climate strategies such as adaptation and geoengineering measures, policy-makers can rely on mathematical decision support models, in particular E3 (economy/energy/environment) models and integrated assessment models (IAMs). This paper reviews some of my recent contributions to climate policy design using different types of E3 models and IAMs.


Climate change Climate policy Energy policy Integrated assessment models Mathematical models in economy/energy/environment 


  1. 1.
    Andrey, C., Bahn, O., Haurie, A. (2016). Computing α-robust equilibria in two integrated assessment models for climate change. In Thuijsman, F., & Wagener, F. (Eds.) Advances in dynamic and evolutionary games, annals of the international society of dynamic games (Vol. 14, pp. 283–300). Springer.Google Scholar
  2. 2.
    Anthoff, D., & Tol, R.S.J. (2013). The uncertainty about the social cost of carbon: A decomposition analysis using FUND. Climatic Change, 117, 515–530.CrossRefGoogle Scholar
  3. 3.
    Bahn, O., Haurie, A., Kypreos, S., Vial, J.-P. (1994). A multinational MARKAL model to study joint implementation of carbon dioxide emissions reduction measures. In Ghosh, P., & Puri, J. (Eds.) Joint implementation of climate change commitments: opportunities and apprehensions (pp. 43–50). New Delhi: Tata Energy Research Institute.Google Scholar
  4. 4.
    Bahn, O., Haurie, A., Kypreos, S., Vial, J.-P. (1998). Advanced mathematical programming modeling to assess the benefits from international CO2 abatement cooperation. Environmental Modeling and Assessment, 3, 107–115.CrossRefGoogle Scholar
  5. 5.
    Bahn, O., Cadena, A., Kypreos, S. (1999). Joint implementation of CO2 emission reduction measures between Switzerland and Colombia. Int. J. Environment and Pollution, 12, 308–322.CrossRefGoogle Scholar
  6. 6.
    Bahn, O. (2001). Combining policy instruments to curb greenhouse gas emissions. Environmental Policy and Governance, 11, 163–171.Google Scholar
  7. 7.
    Bahn, O., Barreto, L., Kypreos, S. (2001). Modelling and assessing inter-regional trade of CO2 emission reduction units. Environmental Modeling and Assessment, 6, 173–182.CrossRefGoogle Scholar
  8. 8.
    Bahn, O. (2002). Swiss policy options to curb CO2 emissions: Insights from GEM-E3 Switzerland. In G. Zaccour (Ed.) Decision and control in management science — essays in honor of Alain Haurie (pp. 121–136). Kluwer Academic Publishers.Google Scholar
  9. 9.
    Bahn, O., & Kypreos, S. (2003). Incorporating different endogenous learning formulations in MERGE. Int. J. of Global Energy Issues, 19, 333–358.CrossRefGoogle Scholar
  10. 10.
    Bahn, O., Haurie, A., Zachary, D.S. (2005). Mathematical modeling and simulation methods in energy systems. In Mathematical models, from encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Oxford: Eolss Publishers.
  11. 11.
    Bahn, O., Drouet, L., Edwards, N., Haurie, A., Knutti, R., Kypreos, S., Stocker, T.F., Vial, J.-P. (2006). The coupling of optimal economic growth and climate dynamics. Climatic Change, 79, 103–119.CrossRefGoogle Scholar
  12. 12.
    Bahn, O., & Haurie, A. (2008). A class of games with coupled constraints to model international GHG emission agreements. International Game Theory Review, 10, 337–362.CrossRefGoogle Scholar
  13. 13.
    Bahn, O., Haurie, A., Malhamé, R. (2008). A stochastic control model for optimal timing of climate policies. Automatica, 44, 1545–1558.CrossRefGoogle Scholar
  14. 14.
    Bahn, O., Breton, M., Sbragia, L., Zaccour, G. (2009). Stability of international environmental agreements: An illustration with asymmetrical countries. International Transactions in Operational Research, 16, 307–324.CrossRefGoogle Scholar
  15. 15.
    Bahn, O., Haurie, A., Malhamé, R. (2010). A stochastic control/game approach to the optimal timing of climate policies. In Filar, J., & Haurie, A. (Eds.) Uncertainty and environmental decision making, international series in operations research & management science (Vol. 138, pp. 211–237). Springer.Google Scholar
  16. 16.
    Bahn, O., Edwards, N., Knutti, R., Stocker, T.F. (2011). Energy policies avoiding a tipping point in the climate system. Energy Policy, 39, 334–348.CrossRefGoogle Scholar
  17. 17.
    Bahn, O., Chesney, M., Gheyssens, J. (2012). The effect of proactive adaptation on green investment. Environmental Science and Policy, 18, 9–24.CrossRefGoogle Scholar
  18. 18.
    Bahn, O., Chesney, M., Gheyssens, J., Knutti, R., Pana, A.C. (2015). Is there room for geoengineering in the optimal climate policy mix? Environmental Science and Policy, 48, 67–76.CrossRefGoogle Scholar
  19. 19.
    Bahn, O., de Bruin, K.C., Fertel, C. (2015). Will adaptation delay the transition to clean energy systems? Les Cahiers du GERAD, G-2015-79, HEC Montréal, Canada.Google Scholar
  20. 20.
    Bahn, O., & Haurie, A. (2016). A cost-effectiveness differential game model for climate agreements. Dynamic Games and Application, 6, 1–19.CrossRefGoogle Scholar
  21. 21.
    Bauer, N., Baumstark, L., Leimbach, M. (2012). The REMIND-R model: The role of renewables in the low-carbon transformation—first-best vs. second-best worlds. Climatic Change, 114, 145–168.CrossRefGoogle Scholar
  22. 22.
    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., Tavoni, M. (2006). A world induced technical change hybrid model. The Energy Journal, 27(2), 13–38.Google Scholar
  23. 23.
    Capros, P., Georgakopoulos, T., Filippoupolitis, A., Kotsomiti, S., Atsaves, G., Proost, S., Van Regemorter, D., Conrad, K., Schmidt, T., Ladoux, N., Vielle, M., Bousquet, A., Bergman, L., Nilsson, C., Zagame, P., McGregor, P., Swales, K. (1997). The GEM-E3 Model: Reference Manual. National Technical University of Athens.Google Scholar
  24. 24.
    Capros, P., Van Regemorter, D., Paroussos, L., Karkatsoulis, P., et al. (2013). GEM-E3 model documentation. European Commission, Joint Research Centre, Institute for Prospective Technological Studies. Retrieved from: Accessed on August 17, 2017.
  25. 25.
    Fishbone, L.G., & Abilock, H. (1981). MARKAL, a linear-programming model for energy systems analysis: Technical description of the BNL version. International Journal of Energy Research, 5, 353–375.CrossRefGoogle Scholar
  26. 26.
    IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)] IPCC, Geneva, Switzerland.Google Scholar
  27. 27.
    Kypreos, S., & Bahn, O. (2003). A MERGE model with endogenous technological progress. Environmental Modeling and Assessment, 8, 249–259.CrossRefGoogle Scholar
  28. 28.
    Levasseur, A., Bahn, O., Beloin Saint-Pierre, D., Marinova, M., Vaillancourt, K. (2017). Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach. Applied Energy, 198, 440–452.CrossRefGoogle Scholar
  29. 29.
    Loulou, R., Remme, U., et al. (2005). Documentation for the TIMES Model. IEA-ETSAP. Retrieved from: Accessed on August 17, 2017.
  30. 30.
    Loulou, R., & Labriet, M. (2008). ETSAP-TIAM: The TIMES integrated assessment model. Part I: Model structure. Computational Management Science, 5, 7–40.CrossRefGoogle Scholar
  31. 31.
    Manne, A.S., & Wene, C.-O. (1992). MARKAL-MACRO: A linked model for energy-economy analysis. Brookhaven National Laboratory, BNL-47161.Google Scholar
  32. 32.
    Manne, A.S., Mendelsohn, R., Richels, R.G. (1995). MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy, 23, 17–34.CrossRefGoogle Scholar
  33. 33.
    Nicolas, C., Tchung-Ming, S., Bahn, O., Delage, E. (2016). Robust energy transition pathways for global warming targets, Les Cahiers du GERAD, G-2016-116, HEC Montréal, Canada.Google Scholar
  34. 34.
    Nordhaus, W.D. (1994). Managing the global commons. Cambridge: The MIT Press.Google Scholar
  35. 35.
    Paltsev, S., Reilly, J.M., Jacoby, H.D., Eckaus, R.S., McFarland, J., Sarofim, M., Asadoorian, M., Babiker, M. (2005). The MIT emissions prediction and policy analysis (EPPA) model: Version 4. MIT joint program on the science and policy of global change. Report No. 125.Google Scholar
  36. 36.
    Vaillancourt, K., Alcocer, Y., Bahn, O. (2015). An analysis of the impacts of new oil pipeline projects on the Canadian energy sector with a TIMES model for Canada. In Giannakidis, G., Labriet, M., Gallachóir, B.Ó., Tosato, G. (Eds.) Informing energy and climate policies using energy systems models, lecture notes in energy (Vol. 30, pp. 247–260). Springer.Google Scholar
  37. 37.
    Vaillancourt, K., Bahn, O., Frenette, E., Sigvaldason, O. (2017). Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework. Applied Energy, 195, 774–785.CrossRefGoogle Scholar
  38. 38.
    Vaillancourt, K., Bahn, O., Roy, P.-O., Patreau, V. (2018). Is there a future for new hydrocarbon projects in a decarbonizing energy system? A case study for Quebec (Canada). Applied Energy, 218, 114–130.CrossRefGoogle Scholar
  39. 39.
    Vaillancourt, K., Bahn, O., Sigvaldason, O. (2018). The Canadian contribution to limiting global warming below 2°c: an analysis of technological options and regional cooperation. In Giannakidis, G., Karlsson, K., Labriet, M., Gallachóir, B.Ó. (Eds.) Limiting global warming to well below 2 c: Energy system modelling and policy development, lecture notes in energy (Vol. 64, pp. 227–244). Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.GERAD and Department of Decision SciencesHEC MontréalMontréalCanada

Personalised recommendations