Advertisement

Environmental Modeling & Assessment

, Volume 23, Issue 6, pp 611–626 | Cite as

Meta-Modeling to Assess the Possible Future of Paris Agreement

  • Frédéric Babonneau
  • Alain Bernard
  • Alain Haurie
  • Marc Vielle
Article
  • 70 Downloads

Abstract

In the meta-modeling approach, one builds a numerically tractable dynamic optimization or game model in which the parameters are identified through statistical emulation of a detailed large scale numerical simulation model. In this paper, we show how this approach can be used to assess the economic impacts of possible climate policies compatible with the Paris Agreement. One indicates why it is appropriate to assume that an international carbon market, with emission rights given to different groups of countries will exist. One discusses the approach to evaluate correctly abatement costs and welfare losses incurred by different groups of countries when implementing climate policies. Finally, using a recently proposed meta-model of game with a coupled constraint on a cumulative CO2 emissions budget, we assess several new scenarios for possible fair burden sharing in climate policies compatible with the Paris Agreement.

Keywords

COP21 Climate policy Meta-modeling Game with coupled constraints International emissions trading scheme Computable general equilibrium model Rawlsian equity rule 

Notes

Funding Information

This research is supported by the Qatar National Research Fund under Grant Agreement No. NPRP10-0212-170447.

References

  1. 1.
    Babonneau, F., Haurie, A. & Vielle, M. (2018) From COP21 pledges to a fair 2°C pathway, Economics of Energy & Environmental Policy, 7(2).Google Scholar
  2. 2.
    Babonneau, F., Haurie, A., & Vielle, M. (2013). A robust meta-game for climate negotiations. Computational Management Science, 10(4), 299–329.CrossRefGoogle Scholar
  3. 3.
    Babonneau, F., Haurie, A., & Vielle, M. (2016). Assessment of balanced burden-sharing in the 2050 EU climate/energy roadmap: a metamodeling approach. Climatic Change, 134(4), 505–519.CrossRefGoogle Scholar
  4. 4.
    A. Haurie, F. Babonneau, N. Edwrads, P. Holden, A. Kanudia, M. Labriet, M. Leimbach, B. Pizzileo, and M. Vielle, Fairness in climate negotiations: a meta-game analysis based on community integrated assessment, ch. in Lucas Bernard and Willi Semmler eds. “Oxford handbook on the macroeconomics of global warming”, Oxford University Press, 2014.Google Scholar
  5. 5.
    Hallegatte, S., Rogelj, J., Allen, M., Clarke, L., Edenhofer, O., Field, C. B., Friedlingstein, P., van Kesteren, L., Knutti, R., Mach, K. J., Mastran-drea, M., Michel, A., Minx, J., Oppenheimer, M., Plattner, G., Riahi, K., Schaeffer, M., Stocker, T. F., & van Vuuren, D. P. (2016). Mapping the climate change challenge. Nature Climate Change, 6, 663–668.CrossRefGoogle Scholar
  6. 6.
    M. Allen, Climate 2020, ch. The scientific case for a cumulative carbon budget, pp. 118–120, Witan Media, London, 2015.Google Scholar
  7. 7.
    Edenhofer, O., Kadner, S., von Stechow, C., & Minx, J. (2016). Beyond the 2oC limit: Facing the economic and institutional challenges, ch. In S. Barrett, C. Carraro, & J. de Melo (Eds.), Towards a workable and effective climate regime. Paris: Economica.Google Scholar
  8. 8.
    Nordhaus, W. D. (1994). Managing the global commons. Cambridge: The MIT Press.Google Scholar
  9. 9.
    Manne, A. S., Mendelsohn, R., & Richels, R. G. (1995). MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy, 23, 17–34.CrossRefGoogle Scholar
  10. 10.
    Loulou, R., & Labriet, M. (2008). ETSAP-TIAM: The TIMES integrated assessment model. Part 1: model structure. Computational Management Science, 5, 7–40.CrossRefGoogle Scholar
  11. 11.
    Bahn, O., Chesney, M., & Gheyssens, J. (2012). The effect of proactive adaptation on green investment. Environmental Science and Policy, 18, 9–24.CrossRefGoogle Scholar
  12. 12.
    Bahn, O., Chesney, M., Gheyssens, J., Knutti, R., & Pana, A. C. (2015). Is there room for geoengineering in the optimal climate policy mix? Environmental Science and Policy, 48, 67–76.CrossRefGoogle Scholar
  13. 13.
    S. Paltsev, J. M. Reilly, H. D. Jacoby, R. S. Eckaus, J. McFarland, M. Sarofim, M. Asadoorian, and M. Babiker, The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4, Tech. Report 125, MIT Joint Program Report on the Science and Policy of Global Change, 2005.Google Scholar
  14. 14.
    Z. Yang, R.S. Eckaus, A.D. Ellerman, and H.D. Jacoby (http://globalchange.mit.edu/publication/14576), The MIT Emissions Prediction and Policy Analysis (EPPA) Model, Tech. Report 6, MIT Joint Program Report on the Science and Policy of Global Change, 1996.
  15. 15.
    Bahn, O. (2001). Combining policy instruments to curb greenhouse gas emissions. Environmental Policy and Governance, 11, 163–171.Google Scholar
  16. 16.
    Capros, P., & Mantzos, L. (2000). Kyoto and technology at the European Union: costs of emission reduction under flexibility mechanisms and technology progress. International Journal of Global Energy Issues, 14(1–4), 169–183.CrossRefGoogle Scholar
  17. 17.
    Fragkos, P., Tasios, N., Paroussos, L., Capros, P., & Tsani, S. (2017). Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy, 100, 216–226.CrossRefGoogle Scholar
  18. 18.
    Sassi, O., Crassous, R., Hourcade, J. C., Gitz, V., Waisman, H., & Guivarch, C. (2010). Imaclim-R: a modelling framework to simulate sustain-able development pathways. International Journal of Global Environ-mental Issues, Special Issue on Models for Sustainable Development for Resolving Global Environmental Issues, 10(1/2), 5–24.Google Scholar
  19. 19.
    Bernard, A., Haurie, A., Vielle, M., & Viguier, L. (2008). A two-level dynamic game of carbon emission trading between Russia. China, and Annex B countries, Journal of Economic Dynamics & Control, 32(6), 1830–1856.CrossRefGoogle Scholar
  20. 20.
    Haurie, A., & Viguier, L. (2003). A stochastic dynamic game of carbon emissions trading. Environmental Modeling and Assessment, 8(3), 239–248.CrossRefGoogle Scholar
  21. 21.
    Viguier, L., Vielle, M., Haurie, A., & Bernard, A. (2006). A two-level computable equilibrium model to assess the strategic allocation of emission allowances within the European Union. Computers & Operation Research, 33, 369–385.CrossRefGoogle Scholar
  22. 22.
    Badri Narayanan, Angel Aguiar, and Robert McDougall (eds.), Global trade, assistance, and production: The gtap 8 data base, Center for Global Trade Analysis, Purdue University, 2012.Google Scholar
  23. 23.
    Clarke, L., & Weyant, J. (2009). Introduction to the EMF 22 special issue on climate change control scenarios. Energy Economics, 31, S63.CrossRefGoogle Scholar
  24. 24.
    Weyant, J. P., de la Chesnaye, F. C., & Blanford, G. J. (2006). Overview of EMF-21: multigas mitigation and climate policy. The Energy Journal, 27, 1–32.Google Scholar
  25. 25.
    Bernard, A., & Vielle, M. (2003). Measuring the welfare cost of climate change policies: a comparative assessment based on the computable general equilibrium model GEMINI-E3. Environmental Modeling and Assessment, 8(3), 199–217.CrossRefGoogle Scholar
  26. 26.
    W. D. Nordhaus and J. G. Boyer, Requiem for Kyoto: An economic analysis of the Kyoto Protocol, The Energy Journal 20 (1999), no. Special Issue: The Costs of the Kyoto Protocol: A Multi-Model Evaluation, 93–130.Google Scholar
  27. 27.
    Boiteux, M. (1956). Sur la gestion des monopoles publics astreints à l’équilibre budgétaire. Econometrica, 24, 22–40.CrossRefGoogle Scholar
  28. 28.
    A. Bernard, The pure economics of tradable pollution permits., Tech. report, Communication to the joint IEA, EMF, IEW seminar, Paris June 16–18, 1999.Google Scholar
  29. 29.
    Diamond, P. A., & Mirrlees, J. (1971). Optimal taxation and public production. American Economic Review, 61(8–27), 261–278.Google Scholar
  30. 30.
    Pottier, A., Méjean, A., Godard, O., & Hourcade, J. C. (2017). A survey of global climate justice: from negotiation stances to moral stakes and back. International Review of Environmental and Resource Economics, 11, 1–53.CrossRefGoogle Scholar
  31. 31.
    Rubin, J. (1996). A model of intertemporal emission trading, banking, and borrowing. Journal of Environmental Economics and Management, 31, 269–286.CrossRefGoogle Scholar
  32. 32.
    Schleich, J., Ehrhart, K. M., Hoppe, C., & Seifert, S. (2006). Banning banking in EU emissions trading? Energy Policy, 34, 112–120.CrossRefGoogle Scholar
  33. 33.
    Fawcett, A. A., Iyer, G. C., Clarke, L. E., Ed-monds, J. A., Hultman, N. E., McJeon, H. C., Rogelj, J., Schuler, R., Alsalam, J., Asrar, G. R., Creason, J., Jeong, M., McFarland, J. J., Mundra, A., & Shi, W. (2015). Can Paris pledges avert severe climate change? Science, 350(6265), 1168–1169.CrossRefGoogle Scholar
  34. 34.
    P. Baer, T. Kram, Athanasiou, and Sivan Kartha, The three salient global mitigation pathways assessed in light of the IPCC carbon budgets, Tech. report, Stockholm Environment Institute, Discussion Brief, 2013.Google Scholar
  35. 35.
    Vandyck, T., Keramidas, K., Saveyn, B., Kitous, A., & Vrontisi, Z. (2016). A global stocktake of the Paris pledges: implications for energy systems and economy. Global Environmental Change, 41, 46–63.CrossRefGoogle Scholar
  36. 36.
    J. Aldy, W. Pizer, M. Tavoni, L. A. Reis, K. Akimoto, G. Blanford, C. Carraro, L. Clarke, J. Edmonds, G. C. Iyer, H. C. McJeon, R. Richels, S. Rose, and F. Sano, Economic tools to promote transparency and comparability in the Paris Agreement, Nature Climate Change 6 (2016), 1000–1004.Google Scholar
  37. 37.
    H. D. Jacoby, Y.-H. Henry Chen, and B. P. Flannery, Transparency in the Paris Agreement, Tech. report, MIT, Joint Program Report Series, 2017.Google Scholar
  38. 38.
    Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33(3), 520–534.CrossRefGoogle Scholar
  39. 39.
    J. Rawls, Theory of justice, Harvard University Press, 1971.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.ORDECSYSChêne-BougeriesSwitzerland
  2. 2.Business SchoolAdolfo Ibañez UniversitySantiagoChile
  3. 3.ASSESSECOSceauxFrance
  4. 4.GERAD-HECMontréalCanada
  5. 5.University of GenevaChêne-BougeriesSwitzerland
  6. 6.LEURE LaboratorySwiss Federal Institute of Technology at Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations