Advertisement

Environmental Modeling & Assessment

, Volume 23, Issue 6, pp 713–727 | Cite as

Methods for the Sustainable Rebuilding of Overexploited Natural Resources

A viability approach
  • Pedro Gajardo
  • Maximiliano Olivares
  • Héctor Ramírez C.
Article

Abstract

In this paper, we introduce an approach based on viability theory for designing rebuilding programs for overexploited natural resources. Instead of using the so-called viability kernel, as is usual in the applications of viability theory, we consider the set of sustainable thresholds, which represents the constraints (parametrized by thresholds) that can be sustained from the current level of the resources under study over time. The recovery of the Southern hake in Chile is presented as an example to illustrate the proposed approach.

Keywords

Sustainability Dynamics Control Viability Rebuilding strategies 

Notes

Acknowledgements

The authors are very grateful to Alejandro Zuleta (Centro de Estudios Pesqueros, Chile) for providing us with processed data on the Southern hake in Chile (obtained from [27]).

References

  1. 1.
    Aubin, J.-P. (1990). A survey of viability theory. SIAM Journal on Control and Optimization, 28(4), 749–788.CrossRefGoogle Scholar
  2. 2.
    Aubin, J. -P. (1991). Viability theory. Systems & control: foundations & applications. Boston: Birkhäuser Boston Inc.Google Scholar
  3. 3.
    Aubin, J.-P., Bayen, A.M., Saint-Pierre, P. (2011). Viability theory, 2nd edn. Heidelberg: Springer. New directions.CrossRefGoogle Scholar
  4. 4.
    Baumgartner, S., & Quaas, M.F. (2009). Ecological-economic viability as a criterion of strong sustainability under uncertainty. Ecological Economics, 68(7), 2008–2020. Methodological Advancements in the Footprint Analysis.CrossRefGoogle Scholar
  5. 5.
    Béné, C., Doyen, L., Gabay, D. (2001). A viability analysis for a bio-economic model. Ecological Economics, 36(3), 385–396.CrossRefGoogle Scholar
  6. 6.
    Bonneuil, N., & Saint-Pierre, P. (2005). Population viability in three trophic-level food chains. Applied Mathematics and Computation, 169(2), 1086–1105.CrossRefGoogle Scholar
  7. 7.
    Brundtland, G., Khalid, M., Agnelli, S., Al-Athel, S., Chidzero, B., Fadika, L., Hauff, V., Lang, I., Shijun, M., de Botero, M.M., et al. (1987). Our common future (‘Brundtland report’).Google Scholar
  8. 8.
    Caswell, H. (2000). Matrix population models, 2nd edn. Sunderland: Sinauer Associates.Google Scholar
  9. 9.
    Cissé, A.A., Gourguet, S., Doyen, L., Blanchard, F., Péreau, J.-C. (2013). A bio-economic model for the ecosystem-based management of the coastal fishery in French Guiana. Environment and Development Economics, 18(3), 245–269.CrossRefGoogle Scholar
  10. 10.
    De Lara, M., & Doyen, L. (2008). Sustainable management of natural resource: mathematical models and methods. New York: Springer.Google Scholar
  11. 11.
    De Lara, M., Doyen, L., Guilbaud, T., Rochet, M. -J. (2007). Is a management framework based on spawning-stock biomass indicators sustainable? A viability approach. ICES Journal of Marine Science, 64, 761–767.CrossRefGoogle Scholar
  12. 12.
    De Lara, M., Doyen, L., Guilbaud, T., Rochet, M.-J. (2007). Monotonicity properties for the viable control of discrete-time systems. Systems Control Letters, 56(4), 296–302.CrossRefGoogle Scholar
  13. 13.
    De Lara, M., & Martinet, V. (2009). Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management. Mathematical Biosciences, 217(2), 118–124.CrossRefGoogle Scholar
  14. 14.
    De Lara, M., Martinet, V., Doyen, L. (2015). Satisficing versus optimality: criteria for sustainability. Bulletin of Mathematical Biology, 77(2), 281–297.CrossRefGoogle Scholar
  15. 15.
    Doyen, L., Béné, C., Bertignac, M., Blanchard, F., Cissé, A. A., Dichmont, C.M., Gourguet, S., Guyader, O., Hardy, P. -Y., Jennings, S., Little, L.R., Macher, C., Mills, D., Noussair, A., Pascoe, S., Pereau, J. -C., Sanz, N., Schwarz, A. -M., Smith, A.D.M., Thébaud, O. (2017). Ecoviability for ecosystem-based fisheries management. Fish and Fisheries.Google Scholar
  16. 16.
    Doyen, L., & Gajardo, P. (2018). Viability standards and multi-criteria maximin. Cahiers du GREThA, Groupe de Recherche en Economie Thérique et Appliquée.Google Scholar
  17. 17.
    Doyen, L., & Martinet, V. (2012). Maximin, viability and sustainability. Journal of Economic Dynamics and Control, 36(9), 1414–1430.CrossRefGoogle Scholar
  18. 18.
    Doyen, L., & Saint-Pierre, P. (1997). Scale of viability and minimal time of crisis. Set-Valued Analysis, 5(3), 227–246.CrossRefGoogle Scholar
  19. 19.
    Hilborn, R., & Walters, C. (1992). Quantitative fisheries stock assessment, choice, dynamics and uncertainty. International Thomson Publishing.Google Scholar
  20. 20.
    Krawczyk, J.B., Pharo, A., Serea, O.S., Sinclair, S. (2013). Computation of viability kernels: a case study of by-catch fisheries. Computational Management Science, 10(4), 365–396.CrossRefGoogle Scholar
  21. 21.
    Martinet, V. (2011). A characterization of sustainability with indicators. Journal of Environmental Economics and Management, 61, 183–197.CrossRefGoogle Scholar
  22. 22.
    Martinet, V., Gajardo, P., De Lara, M., Ramírez, H. (2011). Bargaining with intertemporal maximin payoffs. EconomiX Working Papers 2011-7 University of Paris West - Nanterre la Défense EconomiX.Google Scholar
  23. 23.
    Martinet, V., Thébaud, O., Doyen, L. (2007). Defining viable recovery paths toward sustainable fisheries. Ecological Economics, 64(2), 411–422.CrossRefGoogle Scholar
  24. 24.
    Martinet, V., Thébaud, O., Rapaport, A. (2010). Hare or tortoise? Trade-offs in recovering sustainable bioeconomic systems. Environmental Modeling &, Assessment, 15(6), 503–517.CrossRefGoogle Scholar
  25. 25.
    FIC-R BIP N 30110834: Regional Government of Valparaiso Chile. Quantitative tools for a sustainable recovering of the Chilean Hake http://www.recuperemoslamerluza.cl/ (2014).
  26. 26.
    Oubraham, A., & Zaccour, G. (2018). A survey of applications of viability theory to the sustainable exploitation of renewable resources. Ecological Economics, 145(Supplement C), 346–367.CrossRefGoogle Scholar
  27. 27.
    Payá, I. (2015). Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales, año 2015. Merluza del Sur Technical report, IFOP, 2015.Google Scholar
  28. 28.
    Péreau, J.-C., Doyen, L., Little, L.R., Thébaud, O. (2012). The triple bottom line: meeting ecological, economic and social goals with individual transferable quotas. Journal of Environmental Economics and Management, 63(3), 419–434.CrossRefGoogle Scholar
  29. 29.
    Quinn, T.J., & Collie, J.S. (2005). Sustainability in single-species population models. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1453), 147–162.CrossRefGoogle Scholar
  30. 30.
    Quinn, T.J., & Deriso, R.B. (1999). Quantitative fish dynamics. Biological resource management series. New York: Oxford University Press.Google Scholar
  31. 31.
    Schuhbauer, A., & Sumaila, U.R. (2016). Economic viability and small-scale fisheries: a review. Ecological Economics, 124(Supplement C), 69–75.CrossRefGoogle Scholar
  32. 32.
    Thébaud, O., Ellis, N., Little, L.R., Doyen, L., Marriott, R.J. (2014). Viability trade-offs in the evaluation of strategies to manage recreational fishing in a marine park. Ecological Indicators, 46, 59–69.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.INRIA ChileSantiagoChile
  3. 3.Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (CNRS UMI 2807)Universidad de ChileSantiagoChile

Personalised recommendations