Advertisement

Environmental Modeling & Assessment

, Volume 23, Issue 4, pp 459–469 | Cite as

Numerical Simulation of Gas Injection in Vertical Water Saturated Porous Media

  • Amina IslamEmail author
  • Sylvie Chevalier
  • Imen Ben Salem
  • Mohamed Sassi
Article
  • 320 Downloads

Abstract

We present numerical simulations of drainage induced by air injection in a vertical water-saturated Hele-Shaw cell filled with glass microbeads. We use the macroscale Subsurface Transport Over Multiple Phases (STOMP) simulator developed by the Pacific Northwest National Laboratory’s Hydrology Group. To trigger fingering, we use random permeability fields consistent to capillary entry pressure fields. We compare the numerical results to our own experimental results shown in a previous study. We analyze the effects of the microheterogeneity degree as well as the macroscopic parameters on the gas saturation results. The main objective of the work is to investigate how microscopic effects could be accounted for by macroscopic variables during drainage.

Keywords

Drainage STOMP-WAE Microheterogeneity Relative permeability 

Reference

  1. 1.
    Islam, A., Chevalier, S., Ben Salem, I., Bernabe, Y., Juanes, R., & Sassi, M. (2014). Characterization of the crossover from capillary invasion to viscous fingering to fracturing during drainage in a vertical 2D porous medium. International Journal of Multiphase Flow., 58, 279–291.CrossRefGoogle Scholar
  2. 2.
    Saffman, P. T. & Taylor, G. I. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Royal Society London, 245, 312–329.Google Scholar
  3. 3.
    Aker, E., Maloy, K. J., Hansen, A., & Batrouni, G. G. (1998). A two-dimensional network simulator for two-phase flow in porous media. Transport in Porous Media., 32, 163–186.CrossRefGoogle Scholar
  4. 4.
    Lovoll, G., Meheust, Y., Maloy, K. J., Aker, E., & Schmittbuhl, J. (2005). Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore study. Energy, 30, 861–872.CrossRefGoogle Scholar
  5. 5.
    Ferer, M., Ji, C., Bromhal, G. S., Cook, J., Ahmadi, G., & Smith, D. H. (2004). Crossover from capillatry fingering to viscous fingering for immiscible unstable flow: Experiment and modeling. Physical Review E., 70(016303), 1–7.Google Scholar
  6. 6.
    Holtzman, R., & Juanes, R. (2010). Crossover from fingering to fracturing in deformable disordered media. American Physical Society Physical Review E, 82(4), 046305.Google Scholar
  7. 7.
    Hilpert, M., & Miller, C. T. (2001). Pore-morphology-based simulation of drainage in totally wetting porous media. Advances in Water Resources., 24, 243–255.CrossRefGoogle Scholar
  8. 8.
    Lehmann, P., Wyss, P., Flisch, A., Lehmann, E., Vontobel, P., Krafczyk, M., Kaestner, A., Beckmann, F., Gygi, A., & Fluhler, H. (2006). Tomographical imaging and mathematical description of porous medianused for the prediction of fluid distribution. Vadose Zone Journal., 5, 80–97.CrossRefGoogle Scholar
  9. 9.
    Cense, A. & Berg, S. (2009). The viscous-capillary paradox in 2-phase flow in porous media. Paper SCA2009-13 presented at 23rd Annual Technical Symposium of the Society of Core Analysts, Noordwijk, The Netherlands.Google Scholar
  10. 10.
    Garcia JE & Karsten P. (2003). Flow instabilities during injection of CO2 into saline aquifers, in TOUGH Symposium, Berkeley, California.Google Scholar
  11. 11.
    Saadatpoor, E., Bryant, S. L., & Sepehrnoori, K. (2010). New trapping mechanism in carbon sequestration. Transport in Porous Media., 82, 3–17.CrossRefGoogle Scholar
  12. 12.
    Ataie-Ashtiani, B., Hassanizadeh, S. M., & Celia, M. A. (2002). Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships. Journal of Contaminant Hydrology., 56, 175–192.CrossRefGoogle Scholar
  13. 13.
    Das, D. D., Mirzaei, M., & Widdows, N. (2006). Non-uniqueness in capillary pressure-saturationrelative permeability relationships for two-phase flow in porous media: Interplay between intensity and distribution of random micro-heterogeneities. Chemical Engineering Science., 61, 6786–6803.CrossRefGoogle Scholar
  14. 14.
    White, M. & Oostrom, M. x(2000) STOMP Subsurface Transport Over Multiple Phases: theory guide, PNNL-12030. Pacific Northwest National Laboratory (stomp. pnnl.gov), Richland, Washington.Google Scholar
  15. 15.
    Hilfer, R., & Helmig, R. (2004). Dimensional analysis and upscaling of two-phase flow in porous media with piecewise constant heterogeneities. Advances in Water Resources., 27, 1033–1040.CrossRefGoogle Scholar
  16. 16.
    White, M., Watson, D., Bacon, D., White, S., McGrail, B., & Zhang, Z. (2012) STOMP, Subsurface Transport Over Multiphases, STOMP-CO2 and -CO2e Guide, PNNL 21268, U.S. Department of Energy (stomp. pnnl.gov), Richland, Washington.Google Scholar
  17. 17.
    Lovoll, G., Jankov, M., Maloy, K., Toussaint, R., Schmittbuhl, J., Schafer, G., & Meheust, Y. (2011). Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Transport in Porous Media., 86, 305–324.CrossRefGoogle Scholar
  18. 18.
    Laroussi, C., & De Backer, L. (1979). Relations between geometrical properties of glass beads media and hysteresis loops. Soil Science Society American Journal., 43, 646–650.CrossRefGoogle Scholar
  19. 19.
    Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research., 12(3), 513–522.CrossRefGoogle Scholar
  20. 20.
    Springer, D. S., Loaiciga, H. A., Cullen, S. J., & Everett, L. G. (1998). Air permeability of porous materials under controlled laboratory conditions. Ground Water, 36(4), 558–565.CrossRefGoogle Scholar
  21. 21.
    Cropper, S., Perfect, E., Van den Berg, E., & Mayes, M. (2011). Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation. Soil Physics., 75, 17–25.Google Scholar
  22. 22.
    Suekane, T. & Okada, K. (). Gas injection in a water saturated porous medium: effect of capillary, buoyancy, and viscosity ratio, in International Conference on Greenhouse Gas Control Technologies-11, Kyoto.Google Scholar
  23. 23.
    Rasband, W. S. [Online], ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. Available: https://imagej.nih.gov/ij/. Accessed 01 2015.
  24. 24.
    "Tecplot", Tecplot, Inc. Available: http://www.tecplot.com/. Accessed May 2015.
  25. 25.
    Hassanizadeh, S. M., Celia, M. A., & Dahle, H. K. (2002). Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone Journal., 1, 38–57.CrossRefGoogle Scholar
  26. 26.
    Manthey, S., Hassanizadeh, S. M., Helmig, R., & Hilfer, R. (2008). Dimensional analysis of twophase flow including a rate-dependent capillary pressure-saturation relationship. Advances in Water Resources, 31, 1137–1150.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Khalifa University of Science and Technology, Masdar InstituteMasdar CityUnited Arab Emirates

Personalised recommendations