Advertisement

Smoothed particle hydrodynamics simulation: a tool for accurate characterization of microfluidic devices

  • Edgar Andres Patino-NarinoEmail author
  • Hugo Sakai Idagawa
  • Daniel Silva de Lara
  • Raluca Savu
  • Stanislav A. Moshkalev
  • Luiz Otavio Saraiva Ferreira
Article
  • 36 Downloads

Abstract

This work presents a two-dimensional (2D) model employing the mesh-free smoothed particle hydrodynamics (SPH) method for accurate characterization of microdevices. The simulator was validated by comparing analytical and numerical results from literature with the cases of Poiseuille, Couette, and biphase flow in microfluidic devices. Finally, a test case using two immiscible fluids in a cross-like device with three inputs and one output was computed. This device produces droplets in a flow-focusing configuration. The simulations produced similar flows when compared with theoretical, numerical, and experimental data reported in literature. When handling two liquid phases, such as water and oil, properties such as surface tension must be taken into account. These properties can be well modeled using the continuum surface force method, commonly applied for modeling capillarity in microdevice and microliquid applications. Thus, the implementation of the SPH method demonstrated that it represents a novel and promising alternative for simulation of emulsion formation in microfluidic devices.

Keywords

Emulsion flow Mesh-free simulation Microfluidics Microflow Smoothed particle hydrodynamics 

Notes

Acknowledgements

The authors are grateful to FAPESP and CNPq foundation and to Labmulti (IFGW) Unicamp for laser writing technical support, as well as to the Center for Computational Engineering and Sciences (CCES-CEPID/UNICAMP) for support of computational facilities. E.A.P.-N. is grateful to FAPESP for financial support of his PhD (process no. 2012/21090-5).

References

  1. 1.
    Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130(2):917–942Google Scholar
  2. 2.
    Cheng J, Kricka L, Sheldon E, Wilding P (1998) Sample preparation in microstructured devices. Microsyst Technol Chem Life Sci 194:215–231Google Scholar
  3. 3.
    Filipovic N, Ivanovic M, Kojic M (2008) A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics. Microfluid Nanofluid 7(2):227–235Google Scholar
  4. 4.
    Gifford SC, Spillane AM, Vignes SM, Shevkoplyas SS (2014) Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles. Lab Chip 14(23):4496–505Google Scholar
  5. 5.
    Ehrfeld W (2003) Electrochemistry and microsystems. Electrochim Acta 48(20–22):2857–2868Google Scholar
  6. 6.
    Xia H, Strachan BC, Gifford SC, Shevkoplyas SS (2016) A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma. Sci Rep 6(1):35,943Google Scholar
  7. 7.
    Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–9Google Scholar
  8. 8.
    Dong B, Chen S, Zhou F, Chan CHY, Yi J, Zhang HF, Sun C (2016) Real-time functional analysis of inertial microfluidic devices via spectral domain optical coherence tomography. Sci Rep 6(1):33,250Google Scholar
  9. 9.
    Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech HouseGoogle Scholar
  10. 10.
    Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Ly Chu, Kim W, Fernandez-Nieves A, Martinez CJ, Weitz DA, Kim JW (2008) Designing emulsions using microfluidics. Mater Today 11(4):18–27Google Scholar
  11. 11.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026Google Scholar
  12. 12.
    Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14(15):2739Google Scholar
  13. 13.
    Kunstmann-Olsen C, Hoyland JD, Rubahn HG (2012) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12(5):795–803Google Scholar
  14. 14.
    Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels. Int J Heat Mass Transf 48(10):1982–1998Google Scholar
  15. 15.
    Spielman LGS (1968) Improving resolution in coulter counting by hydrodynamic focusing. J Colloid Interface Sci 26(2):175–182Google Scholar
  16. 16.
    de Mello AJ, Edel JB (2007) Hydrodynamic focusing in microstructures: Improved detection efficiencies in subfemtoliter probe volumes. J Appl Phys 101(8):084,903Google Scholar
  17. 17.
    Shen M, Yamahata C, Gijs MAM (2008) A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump. J Micromech Microeng 18(2):025,031Google Scholar
  18. 18.
    Bourouina T, Grandchamp J (1996) Modeling micropumps with electrical equivalent networks. J Micromech Microeng 6(4):398–404Google Scholar
  19. 19.
    Jamalabadi MYA, DaqiqShirazi M, Kosar A, Shadloo MS (2017) Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor Appl Mech Lett 7(4):243–251Google Scholar
  20. 20.
    Clift RR, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New YorkGoogle Scholar
  21. 21.
    Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275MathSciNetzbMATHGoogle Scholar
  23. 23.
    Taeibi-Rahni M, Karbaschi M, Miller R (2015) Computational methods for complex liquid-fluid interfaces. CRC Press, Boca RatonGoogle Scholar
  24. 24.
    He L, Seaid M (2016) A Runge–Kutta–Chebyshev SPH algorithm for elastodynamics. Acta Mech 227(7):1813–1835MathSciNetzbMATHGoogle Scholar
  25. 25.
    Liu MB, Liu GR, Zong Z (2008) An overview on smoothed particle hydrodynamics. Int J Comput Methods 05(01):135–188MathSciNetzbMATHGoogle Scholar
  26. 26.
    Shadloo M, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhang ZL, Liu MB (2018) A decoupled finite particle method for modeling incompressible flows with free surfaces. Appl Math Model 60:606–633MathSciNetGoogle Scholar
  28. 28.
    Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214zbMATHGoogle Scholar
  29. 29.
    Liu MB, Liu GR (2016) Particle methods for multi-scale and multi-physics. World Scientific, SingaporezbMATHGoogle Scholar
  30. 30.
    Liu L, Yan H, Zhao G, Zhuang J (2016) Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Exp Therm Fluid Sci 78:254–265Google Scholar
  31. 31.
    Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):1–12Google Scholar
  32. 32.
    Zhi-bin W, Rong C, Hong W, Qiang L, Xun Z, Shu-zhe L (2016) An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl Math Model 40:9625–9655MathSciNetGoogle Scholar
  33. 33.
    Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72(2):026,301Google Scholar
  34. 34.
    Vázquez-Quesada A, Ellero M, Español P (2012) A SPH-based particle model for computational microrheology. Microfluid Nanofluid 13(2):249–260Google Scholar
  35. 35.
    Müller K, Fedosov DA, Gompper G (2015) Smoothed dissipative particle dynamics with angular momentum conservation. J Comput Phys 281:301–315MathSciNetzbMATHGoogle Scholar
  36. 36.
    Fedosov DA, Peltomäki M, Gompper G (2014) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10(24):4258–4267Google Scholar
  37. 37.
    Karunasena HCP, Senadeera W, Gu YT, Brown RJ (2014) A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl Math Model 38(15–16):3781–3801zbMATHGoogle Scholar
  38. 38.
    Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231–252zbMATHGoogle Scholar
  39. 39.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetzbMATHGoogle Scholar
  40. 40.
    Tartakovsky AM, Meakin P, Scheibe TD, Wood BD (2007) A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour Res 43(5):1–18Google Scholar
  41. 41.
    Nugent S, Posch H (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62(4 Pt A):4968–75Google Scholar
  42. 42.
    Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353zbMATHGoogle Scholar
  43. 43.
    Wu J, Yu ST, Bn Jiang (1998) Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model. Int J Numer Methods Eng 42(4):583–600Google Scholar
  44. 44.
    Liu MB, Liu GR (2004) Meshfree particle simulation of micro channel flows with surface tension. Comput Mech 35(5):332–341zbMATHGoogle Scholar
  45. 45.
    Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetzbMATHGoogle Scholar
  46. 46.
    Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146MathSciNetzbMATHGoogle Scholar
  47. 47.
    Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 1689(January):1–26Google Scholar
  48. 48.
    Mokos A, Rogers BD, Stansby PK, Dominguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316Google Scholar
  49. 49.
    Grenier N, Le Touze D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102Google Scholar
  50. 50.
    Xu X, Ouyang J, Jiang T, Li Q (2014) Numerical analysis of the impact of two droplets with a liquid film using an incompressible SPH method. J Eng Math 85(1):35–53MathSciNetzbMATHGoogle Scholar
  51. 51.
    Shadloo MS, Yildiz M (2011) Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Int J Numer Methods Eng 87(10):988–1006MathSciNetzbMATHGoogle Scholar
  52. 52.
    Koukouvinis PK, Anagnostopoulos JS, Papantonis DE (2013) Simulation of 2D wedge impacts on water using the SPH-ALE method. Acta Mech 224(11):2559–2575zbMATHGoogle Scholar
  53. 53.
    Shadloo MS, Zainali A, Yildiz M (2013) Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput Mech 51(5):699–715MathSciNetzbMATHGoogle Scholar
  54. 54.
    Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021zbMATHGoogle Scholar
  55. 55.
    Hua J, Stene JF, Lin P (2008) Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J Comput Phys 227(6):3358–3382MathSciNetzbMATHGoogle Scholar
  56. 56.
    Hu X, Adams N (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetzbMATHGoogle Scholar
  57. 57.
    Szewc K, Pozorski J, Tanire A (2011) Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. Int J Heat Mass Transf 54(23–24):4807–4816zbMATHGoogle Scholar
  58. 58.
    Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872MathSciNetzbMATHGoogle Scholar
  59. 59.
    Oger G, Marrone S, Le Touzé D, de Leffe M (2016) SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys 313:76–98MathSciNetzbMATHGoogle Scholar
  60. 60.
    Szewc K, Pozorski J, Minier JP (2013) Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. Int J Multiph Flow 50:98–105Google Scholar
  61. 61.
    Adami S, Hu XY, Adams NA (2013) A transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 241:292–307MathSciNetzbMATHGoogle Scholar
  62. 62.
    Anderson JDJ (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill, New YorkGoogle Scholar
  63. 63.
    Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226zbMATHGoogle Scholar
  64. 64.
    Batchelor GK, Young AD (1968) An introduction to fluid mechanics, vol 35. Cambridge University Press, CambridgeGoogle Scholar
  65. 65.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetzbMATHGoogle Scholar
  66. 66.
    Adami S, Hu XY, Adams N (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetGoogle Scholar
  67. 67.
    Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278zbMATHGoogle Scholar
  68. 68.
    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetzbMATHGoogle Scholar
  69. 69.
    Shadloo MS, Rahmat A, Yildiz M (2013) A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput Mech 52(3):693–707MathSciNetzbMATHGoogle Scholar
  70. 70.
    Klostermann J, Schaake K, Schwarze R (2013) Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Methods Fluids 71(8):960–982MathSciNetGoogle Scholar
  71. 71.
    Ming FR, Sun PN, Zhang AM (2017) Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 52(11–12):2665–2684MathSciNetGoogle Scholar
  72. 72.
    Saitoh TR, Makino J (2013) A density-independent formulation of smoothed particle hydrodynamics. Astrophys J 768(1):44Google Scholar
  73. 73.
    Gomez-Gesteira M, Rogers BD, Ra Dalrymple, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48(sup1):6–27Google Scholar
  74. 74.
    Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MathSciNetzbMATHGoogle Scholar
  75. 75.
    Zhang A, Sun P, Ming F (2015) An SPH modeling of bubble rising and coalescing in three dimensions. Comput Methods Appl Mech Eng 294(145):189–209MathSciNetGoogle Scholar
  76. 76.
    Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75(7):2445–2465MathSciNetzbMATHGoogle Scholar
  77. 77.
    Yeganehdoust F, Yaghoubi M, Emdad H, Ordoubadi M (2016) Numerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamics. Appl Math Model 40(19–20):8493–8512MathSciNetGoogle Scholar
  78. 78.
    Layzer D (1955) On the instability of superposed fluids in a gravitational field. Astrophys J 122:1MathSciNetGoogle Scholar
  79. 79.
    Dalziel SB (2001) Toy models for Rayleigh–Taylor instability. In: 8th international workshop on the physics of compressible turbulent mixing. Lawrence Livermore National Laboratory Publication, UCRL-MI-146350, p Paper T10Google Scholar
  80. 80.
    Goncharov VN (2002) Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys Rev Lett 88(13):134,502Google Scholar
  81. 81.
    Abarzhi S, Nishihara K, Glimm J (2003) Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys Lett A 317(5–6):470–476zbMATHGoogle Scholar
  82. 82.
    Amaya-Bower L, Lee T (2010) Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Comput Fluids 39(7):1191–1207zbMATHGoogle Scholar
  83. 83.
    Zhang Q, Guo W (2015) Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J Fluid Mech 786:47–61MathSciNetzbMATHGoogle Scholar
  84. 84.
    Abarzhi S (2003) The effect of the density ratio on the nonlinear dynamics of the unstable fluid interface. In: Center for turbulence research annual research briefs, pp 251–260Google Scholar
  85. 85.
    Ramaprabhu P, Dimonte G (2005) Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys Rev E Stat Nonlinear Soft Matter Phys 71(3):1–9Google Scholar
  86. 86.
    Choi S, Sohn SI (2017) Multi-harmonic models for bubble evolution in the Rayleigh–Taylor instability. J Korean Math Soc 54(2):663–673MathSciNetzbMATHGoogle Scholar
  87. 87.
    Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetGoogle Scholar
  88. 88.
    Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L (2009) Quantitative benchmark computations of two-dimensional bubble dynamics. Int J Numer Methods Fluids 60:1259–1288MathSciNetzbMATHGoogle Scholar
  89. 89.
    Litvinov S, Ellero M, Hu X, Adams N (2010) A splitting scheme for highly dissipative smoothed particle dynamics. J Comput Phys 229(15):5457–5464zbMATHGoogle Scholar
  90. 90.
    Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A: Math Phys Eng Sci 146(858):501–523Google Scholar
  91. 91.
    Cheng L, Ribatski G, Thome JR (2008) Two-phase flow patterns and flow-pattern maps: fundamentals and applications. Appl Mech Rev 61(050):802Google Scholar
  92. 92.
    Dutta R (2008) Fundamentals of biochemical engineering. Ane Books India, New DelhiGoogle Scholar
  93. 93.
    Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9–12):1008–1020MathSciNetzbMATHGoogle Scholar
  94. 94.
    Zhou L, Cai ZW, Zong Z, Chen Z (2016) An SPH pressure correction algorithm for multiphase flows with large density ratio. Int J Numer Methods Fluids 81(12):765–788MathSciNetGoogle Scholar
  95. 95.
    Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods. J Comput Phys 298:280–304MathSciNetzbMATHGoogle Scholar
  96. 96.
    Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27zbMATHGoogle Scholar
  97. 97.
    Zhang M, Deng XL (2015) A sharp interface method for SPH. J Comput Phys 302:469–484MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computational Mechanics, School of Mechanical EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Center for Semiconductor Components and NanotechnologyUniversity of CampinasCampinasBrazil

Personalised recommendations